当前位置:高中试题 > 数学试题 > 等差数列 > 已知数列满足.(1)证明数列为等比数列,并求出数列的通项公式;(2)若数列满足.证明:数列是等差数列.(3)证明:....
题目
题型:不详难度:来源:
已知数列满足
(1)证明数列为等比数列,并求出数列的通项公式;
(2)若数列满足.证明:数列是等差数列.
(3)证明:
答案
(1);(2)详见解析;(3)详见解析.
解析

试题分析:(1)证明数列为等比数列,就是证明为一个常数. 因为,所以,所以,是以2为首项,2为公比的等比数列. 则,即,;(2)证明数列是等差数列,就是要证明为一个常数.首先化简等式,即,所以,这实质是,因此作差消去得:,再作差消去常数得:,即;(3)证明数列不等式,一般有两个思路,一是求和,二是放缩.本题由于通项不适宜求和,所以尝试放缩,即利用变量分离进行放缩,由,得.
试题解析:(1)因为,所以,且,
所以,是以2为首项,2为公比的等比数列.  2分
,即,.  3分
(2)因为所以.   4分
所以    ①
 ②      6分
②-①,得  
   ③
   ④  8分
④-③,得,

, 10分
所以数列为等差数列.
(3)因为, 11分
所以. 12分
核心考点
试题【已知数列满足.(1)证明数列为等比数列,并求出数列的通项公式;(2)若数列满足.证明:数列是等差数列.(3)证明:.】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
用数学归纳法证明,在验证n=1成立时,等式左边是              
题型:不详难度:| 查看答案
设正整数数列满足:,且对于任何,有
(1)求
(2)求数列的通项
题型:不详难度:| 查看答案
在公差不为0的等差数列中,,且成等比数列.
(1)求的通项公式;
(2)设,证明:.
题型:不详难度:| 查看答案
在公差不为0的等差数列中,,且成等比数列.
(1)求的通项公式;
(2)设,试比较的大小,并说明理由.
题型:不详难度:| 查看答案
间的整数为分子,以为分母组成分数集合,其所有元素和为;以间的整数为分子,以为分母组成不属于集合的分数集合,其所有元素和为;……,依次类推以间的整数为分子,以为分母组成不属于的分数集合,其所有元素和为;则=________.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.