当前位置:高中试题 > 数学试题 > 数列的概念与表示方法 > (1)对于数列{an},若存在常数T≥0,使得对于任意n∈N*,均有|an|≤T,则称{an}为有界数列.以下数列{an}为有界数列的是______;(写出满足...
题目
题型:不详难度:来源:
(1)对于数列{an},若存在常数T≥0,使得对于任意n∈N*,均有|an|≤T,则称{an}为有界数列.以下数列{an}为有界数列的是______;(写出满足条件的所有序号)
①an=n-2②an=
1
n+2
an
an+1
=2,a1=1

(2)数列{an}为有界数列,且满足an+1=-an2+2an,a1=t(t>0),则实数t的取值范围为______.
答案
(1)①an=n-2,|an|=|n-2|≥0,不存在实数T满足|an|≤T,①错误
an=
1
n+2
>0且数列单调递减,则|an|≤a1=
1
3
,则T=
1
3
时,|an|≤
1
3
,②正确
an
an+1
=2,a1=1
可得an=(
1
2
)
n-1
>0单调递减的数列,an≤a1=1,T=1时,|an|≤1,③正确
(2)∵an+1=-(an-1)2+1≤1
∴1-an+1=(1-an2∴lg(1-an+1)=2lg(1-an
lg(1-an+1)
lg(1-an)
=2

由等比数列的通项公式可得,an=1-(t-1)2n-1
由有界数列定义知,|t-1|≤1.又t>0,故t的取值范围是0<t≤2.
故答案为:②③;0<t≤2
核心考点
试题【(1)对于数列{an},若存在常数T≥0,使得对于任意n∈N*,均有|an|≤T,则称{an}为有界数列.以下数列{an}为有界数列的是______;(写出满足】;主要考察你对数列的概念与表示方法等知识点的理解。[详细]
举一反三
已知数列{an}中,a1=2,前n项和Sn,若Sn=n2an,则an=(  )
A.
2
n
B.
4
n+1
C.
2
n(n+1)
D.
4
n(n+1)
题型:不详难度:| 查看答案
设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3…若b1>c1,b1+c1=2a1,an+1=anbn+1=
cn+an
2
cn+1=
bn+an
2
,则(  )
A.{Sn}为递减数列
B.{Sn}为递增数列
C.{S2n-1}为递增数列,{S2n}为递减数列
D.{S2n-1}为递减数列,{S2n}为递增数列
题型:不详难度:| 查看答案
已知数列{an}的通项为an=(
2
3
)n-1•[(
2
3
)
n-1
-1]
,下列表述正确的是(  )
A.最大项为0,最小项为-
20
81
B.最大项为0,最小项不存在
C.最大项不存在,最小项为-
20
81
D.最大项为0,最小项为a4
题型:南汇区一模难度:| 查看答案
记集合P={0,2,4,6,8},Q={m|m=100a1+10a2+a3,a1,a2,a3∈P},将集合Q中的所有元素排成一个递增数列,则此数列第68项是(  )
A.68B.464C.468D.666
题型:浙江二模难度:| 查看答案
数列{an}中,已知a1=1,a2=2,an+1=an+an+2(n∈N*),则a7=______.
题型:广西一模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.