当前位置:高中试题 > 数学试题 > 数列的概念与表示方法 > 已知f(x)=(x-1)2,g(x)=10(x-1),数列{an}满足(an+1-an)g(an)+f(an)=0,a1=2,bn=910(n+2)(an-1)...
题目
题型:不详难度:来源:
已知f(x)=(x-1)2,g(x)=10(x-1),数列{an}满足(an+1-an)g(an)+f(an)=0,a1=2,bn=
9
10
(n+2)(an-1)

(I)求数列{an}的通项公式;
(Ⅱ)求数列{bn}中最大项.
答案
(I)由方程(an+1-an)g(an)+f(an)=0,
得:(an+1-an)×10×(an-1)+(an-1)2=0,
整理得(an-1)[10×(an+1-an)+an-1]=0;
显然由a1=2,知{an}显然不是常数列,且不等于1,所以两边除以an-1;
得10×(an+1-an)+an-1=0,整理后得:10(an+1-1)=9(an-1),
a1-1=1,则{an-1}就是首项为1,公比为
9
10
的等比数列.
所以an-1=(
9
10
)n-1
an=(
9
10
)n-1+1

(Ⅱ)将an-1=(
9
10
n-1代入bn=
9
10
(n+2)(an-1),得bn=(
9
10
n×(n+2).
bn+1-bn=(
9
10
n+1×(n+3)-(
9
10
n×(n+2)=(
9
10
n×
7-n
10

∴{bn}在[1,7]上单调递增,在[8,+∞)上单调递减,
∴当n取7或8时bn取最大值,最大值为9×(
9
10
7
核心考点
试题【已知f(x)=(x-1)2,g(x)=10(x-1),数列{an}满足(an+1-an)g(an)+f(an)=0,a1=2,bn=910(n+2)(an-1)】;主要考察你对数列的概念与表示方法等知识点的理解。[详细]
举一反三
若数列{an}的通项an=-2n2+29n+3,则此数列的最大项的值是(  )
A.107B.108C.108
1
8
D.109
题型:不详难度:| 查看答案
已知数列{an}满足:a1=1,
an+1
an
=
1
2
,则数列{an}是(  )
A.递增数列B.递减数列C.摆动数列D.常数列
题型:不详难度:| 查看答案
数列{an}的通项公式an=3n2-(a+9)n+6+2a(a∈R),若a6与a7两项中至少有一项是{an}的最小值,则实数a的取值范围是______.
题型:不详难度:| 查看答案
数列{an}中,如果存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),则称ak为{an}的一个峰值.
(Ⅰ)若an=-|n-7|,则{an}的峰值为______;
(Ⅱ)若an=





n2-tn,  n≤2
-tn+4,  n>2
且{an}存在峰值,则实数t的取值范围是______.
题型:不详难度:| 查看答案
已知数列{an}和{bn}中,a1=2,an+1=
2
an+1
bn=|
an+2
an-1
|
,n∈N*,则b3=______;若bk不超过257,则最大的正整数k=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.