当前位置:高中试题 > 数学试题 > 两角和与差的三角函数 > 已知α,β均为锐角,且sinα=35,sin(α-β)=-1010.(1)求tan(α-β)的值;(2)求cosβ的值....
题目
题型:不详难度:来源:
已知α,β均为锐角,且sinα=
3
5
,sin(α-β)=-


10
10

(1)求tan(α-β)的值;
(2)求cosβ的值.
答案
(1)∵α,β∈(0,
π
2
)
,∴-
π
2
<α-β<
π
2
.…(2分)
sin(α-β)=-


10
10
,∴-
π
2
<α-β<0
…(4分)
cos(α-β)=
3


10
10
,∴tan(α-β)=-
1
3
…(7分)
(2)∵α为锐角,sinα=
3
5
,∴cosα=
4
5
.…(8分)
∴cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)…(12分)
=
4
5
×
3


10
10
+
3
5
×(-


10
10
)
=
9


10
50
.…(14分)
核心考点
试题【已知α,β均为锐角,且sinα=35,sin(α-β)=-1010.(1)求tan(α-β)的值;(2)求cosβ的值.】;主要考察你对两角和与差的三角函数等知识点的理解。[详细]
举一反三
已知sinα=
15
17
,cosβ=-
4
5
,α∈(
π
2
,π),β∈(
π
2
,π),则sin(α-β)
=(  )
A.
44
85
B.-
44
85
C.
36
85
D.-
36
85
题型:不详难度:| 查看答案
若向量


m
=(


3
sinωx,cosωx),


n
=(cosωx,-cosωx),已知函数f(x)=


m


n
(ω>0)的周期为
π
2

(1)求ω的值、函数f(x)的单调递增区间、函数f(x)的零点、函数f(x)的对称轴方程;
(2)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,求此时函数f(x)的值域.
题型:不详难度:| 查看答案
化y=3sinx+


3
cosx为y=Asin(x+φ)(A>0,φ∈(-π,π)形式:______.
题型:不详难度:| 查看答案
已知角α的顶点与直角坐标系的原点重合,始边在x的正半轴上,终边在y=-2x且x≤0,求sin(2α+
3
)的值.
题型:不详难度:| 查看答案
已知A,B,C是△ABC三内角,向量


m
=(-1,


3
),


n
=(cosA,sinA),且


m


n
=1.
(1)求角A;
(2)若
1+sin2B
cos2B-sin2B
=-3,求tanB.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.