当前位置:高中试题 > 数学试题 > 正弦函数的图象与性质 > (5分)(2011•湖北)已知函数f(x)=sinx﹣cosx,x∈R,若f(x)≥1,则x的取值范围为(          )A.{x|kπ+≤x≤kπ+π,...
题目
题型:不详难度:来源:
(5分)(2011•湖北)已知函数f(x)=sinx﹣cosx,x∈R,若f(x)≥1,则x的取值范围为(          )
A.{x|kπ+≤x≤kπ+π,k∈Z}B.{x|2kπ+≤x≤2kπ+π,k∈Z}
C.{x|kπ+≤x≤kπ+,k∈Z}D.{x|2kπ+≤x≤2kπ+,k∈Z}

答案
B
解析

试题分析:利用两角差的正弦函数化简函数f(x)=sinx﹣cosx,为一个角的一个三角函数的形式,根据f(x)≥1,求出x的范围即可.
解:函数f(x)=sinx﹣cosx=2sin(x﹣),因为f(x)≥1,所以2sin(x﹣)≥1,所以,
所以f(x)≥1,则x的取值范围为:{x|2kπ+≤x≤2kπ+π,k∈Z}
故选B
点评:本题是基础题考查三角函数的化简,三角函数不等式的解法,考查计算能力,常考题型.
核心考点
试题【(5分)(2011•湖北)已知函数f(x)=sinx﹣cosx,x∈R,若f(x)≥1,则x的取值范围为(          )A.{x|kπ+≤x≤kπ+π,】;主要考察你对正弦函数的图象与性质等知识点的理解。[详细]
举一反三
(5分)(2011•天津)已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,﹣π<φ≤π.若函数f(x)的最小正周期为6π,且当x=时,f(x)取得最大值,则(         )
A.f(x)在区间[﹣2π,0]上是增函数B.f(x)在区间[﹣3π,﹣π]上是增函数
C.f(x)在区间[3π,5π]上是减函数D.f(x)在区间[4π,6π]上是减函数

题型:不详难度:| 查看答案
设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)
(1)求f(x)的最小正周期;
(2)若函数y=f(x)的图象按=()平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.
题型:不详难度:| 查看答案
[2012·山东高考]函数y=2sin (0≤x≤9)的最大值与最小值之和为(  )
A.2-B.0C.-1D.-1-

题型:不详难度:| 查看答案
[2014·唐山模拟]直线x=,x=都是函数f(x)=sin(ωx+φ)(ω>0,-π<φ≤π)的对称轴,且函数f(x)在区间上单调递减,则(  )
A.ω=6,φ=B.ω=6,φ=-
C.ω=3,φ=D.ω=3,φ=-

题型:不详难度:| 查看答案
[2012·大纲全国卷]若函数f(x)=sin(φ∈[0,2π]) 是偶函数,则φ=(  )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.