当前位置:高中试题 > 数学试题 > 正弦函数的图象与性质 > (5分)(2011•天津)已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,﹣π<φ≤π.若函数f(x)的最小正周期为6π,且当x=时,f(x)取得最...
题目
题型:不详难度:来源:
(5分)(2011•天津)已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,﹣π<φ≤π.若函数f(x)的最小正周期为6π,且当x=时,f(x)取得最大值,则(         )
A.f(x)在区间[﹣2π,0]上是增函数B.f(x)在区间[﹣3π,﹣π]上是增函数
C.f(x)在区间[3π,5π]上是减函数D.f(x)在区间[4π,6π]上是减函数

答案
A
解析

试题分析:由函数f(x)的最小正周期为6π,根据周期公式可得ω=,且当x=时,f(x)取得最大值,代入可得,2sin(φ)=2,结合已知﹣π<φ≤π可得φ= 可得,分别求出函数的单调增区间和减区间,结合选项验证即可
解:∵函数f(x)的最小正周期为6π,根据周期公式可得ω=
∴f(x)=2sin(φ),
∵当x=时,f(x)取得最大值,∴2sin(φ)=2,
∵﹣π<φ≤π,∴φ=,∴
 可得函数的单调增区间:
可得函数的单调减区间:
结合选项可知A正确,
故选A.
点评:本题主要考查了利用函数的部分图象求解函数的解析式,还考查了函数y=Asin(ωx+φ)(A>0,ω>0)的单调区间的求解,属于对基础知识的考查.
核心考点
试题【(5分)(2011•天津)已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,﹣π<φ≤π.若函数f(x)的最小正周期为6π,且当x=时,f(x)取得最】;主要考察你对正弦函数的图象与性质等知识点的理解。[详细]
举一反三
设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)
(1)求f(x)的最小正周期;
(2)若函数y=f(x)的图象按=()平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.
题型:不详难度:| 查看答案
[2012·山东高考]函数y=2sin (0≤x≤9)的最大值与最小值之和为(  )
A.2-B.0C.-1D.-1-

题型:不详难度:| 查看答案
[2014·唐山模拟]直线x=,x=都是函数f(x)=sin(ωx+φ)(ω>0,-π<φ≤π)的对称轴,且函数f(x)在区间上单调递减,则(  )
A.ω=6,φ=B.ω=6,φ=-
C.ω=3,φ=D.ω=3,φ=-

题型:不详难度:| 查看答案
[2012·大纲全国卷]若函数f(x)=sin(φ∈[0,2π]) 是偶函数,则φ=(  )
A.B.C.D.

题型:不详难度:| 查看答案
[2014·海淀模拟]同时具有下列性质:“①对任意x∈R,f(x+π)=f(x)恒成立;②图象关于直线x=对称;③在[-]上是增函数”的函数可以是(  )
A.f(x)=sin()B.f(x)=sin(2x-)
C.f(x)=cos(2x+)D.f(x)=cos(2x-)

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.