当前位置:高中试题 > 数学试题 > 正弦函数的图象与性质 > 在中,内角所对边长分别为,,.(1)求的最大值及的取值范围;(2)求函数的值域....
题目
题型:不详难度:来源:
中,内角所对边长分别为
(1)求的最大值及的取值范围;
(2)求函数的值域.
答案
(1)     (2)
解析

试题分析:(1)由=bc·cosA=8,知b2+c2=32,由b2+c2≥2bc,知bc的最大值为16,即,由此能求出bc的最大值及A的取值范围.
(2)由已知条件把原函数化简为,然后结合.,由此能求出所求的值域.
试题解析:(1)=bccosA,,所以,故,当且仅当取最大值16,,所以A.
(2)

由于,故函数的值域为
核心考点
试题【在中,内角所对边长分别为,,.(1)求的最大值及的取值范围;(2)求函数的值域.】;主要考察你对正弦函数的图象与性质等知识点的理解。[详细]
举一反三
为得到函数的图像,可将函数的图像向右平移
单位长度,则的最小值是(   )
A.B.C.D.

题型:不详难度:| 查看答案
若函数,当时,取得最大值,则      
题型:不详难度:| 查看答案
函数的图象的一条对称轴方程是(   ).
A.B.C.D.

题型:单选题难度:简单| 查看答案
已知的内角,满足.
(1)求的取值范围; (2)求函数的最小值.
题型:解答题难度:一般| 查看答案
若函数(  ).
A.最小正周期为的奇函数B.最小正周期为的奇函数
C.最小正周期为的偶函数D.最小正周期为的偶函数

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.