当前位置:高中试题 > 数学试题 > 已知三角函数值求角 > 已知f(x)=cos2(nπ+x)•sin2(nπ-x)cos2[(2n+1)π-x](n∈Z),(1)化简f(x)的表达式;(2)求f(π2010)+f(50...
题目
题型:解答题难度:一般来源:不详
已知f(x)=
cos2(nπ+x)•sin2(nπ-x)
cos2[(2n+1)π-x]
(n∈Z)

(1)化简f(x)的表达式;
(2)求f(
π
2010
)+f(
502π
1005
)
的值.
答案
(1)当n为偶数,即n=2k,(k∈Z)时,
f(x)=
cos2(2kπ+x)•sin2(2kπ-x)
cos2[(2×2k+1)π-x]
=
cos2x•sin2(-x)
cos2(π-x)
=
cos2x•(-sinx)2
(-cosx)2
=sin2x,(n∈Z)
当n为奇数,即n=2k+1,(k∈Z)时f(x)=
cos2[(2k+1)π+x]•sin2[(2k+1)π-x]
cos2{[2×(2k+1)+1]π-x}
=
cos2[2kπ+(π+x)]•sin2[2kπ+(π-x)]
cos2[2×(2k+1)π+(π-x)]
=
cos2(π+x)•sin2(π-x)
cos2(π-x)
=
(-cosx)2sin2x
(-cosx)2
=sin2x,(n∈Z)

∴f(x)=sin2x;
(2)由(1)得f(
π
2010
)+f(
502π
1005
)=sin2
π
2010
+sin2
1004π
2010

=sin2
π
2010
+sin2(
π
2
-
π
2010
)
=sin2
π
2010
+cos2(
π
2010
)=1
核心考点
试题【已知f(x)=cos2(nπ+x)•sin2(nπ-x)cos2[(2n+1)π-x](n∈Z),(1)化简f(x)的表达式;(2)求f(π2010)+f(50】;主要考察你对已知三角函数值求角等知识点的理解。[详细]
举一反三
化简:
tan(3π-α)
sin(π+α)sin(
2
-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)
题型:解答题难度:一般| 查看答案
已知角α的终边落在直线y=-3x(x<0)上,则
|sinα|
sinα
-
|cosα|
cosα
=______.
题型:填空题难度:一般| 查看答案
求值:cos2α+cos2(α+120°)+cos2(α+240°)的值为 ______.
题型:填空题难度:一般| 查看答案
已知f(θ)=sin2θ+sin2(θ+α)+sin2(θ+β),其中α、β为参数,0≤α<β≤π.是否存在这样的α、β,使f(θ)是与θ无关的定值?若存在,求出α、β的值;若不存在,请说明理由.
题型:解答题难度:一般| 查看答案
已知向量


m
=(2cosωx,-1),


n
=(sinωx-cosωx,2),函数f(x)=


m


n
+3的周期为π.
(Ⅰ) 求正数ω;
(Ⅱ) 若函数f(x)的图象向左平移
π
8
,再横坐标不变,纵坐标伸长到原来的


2
倍,得到函数g(x)的图象,求函数g(x)的单调增区间.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.