当前位置:高中试题 > 数学试题 > 二分法求函数零点 > 已知f(x)图象是一条连续的曲线,且在区间(a,b)内有唯一零点x0,用“二分法”求得一系列含零点x0的区间,这些区间满足(a,b)⊃(a1,b1)⊃(a2,b...
题目
题型:填空题难度:一般来源:宁波模拟
已知f(x)图象是一条连续的曲线,且在区间(a,b)内有唯一零点x0,用“二分法”求得一系列含零点x0的区间,这些区间满足(a,b)⊃(a1,b1)⊃(a2,b2)⊃…⊃(ak,bk).若f(a)<0,f(b)>0,则f(ak)的符号为______.(填:“正“,“负“,“正、负、零均可能“)
答案
因为f(a)<0,f(b)>0.
要想一步步进行下去,直到求出零点,
按二分法的定义可知,f(ak)<0.
如果f(ak)为0的话,零点就是ak应该是左闭区间;
如果f(ak)为正的话,零点应该在(ak,bk)的前面那个区间内.
故答案为:负.
核心考点
试题【已知f(x)图象是一条连续的曲线,且在区间(a,b)内有唯一零点x0,用“二分法”求得一系列含零点x0的区间,这些区间满足(a,b)⊃(a1,b1)⊃(a2,b】;主要考察你对二分法求函数零点等知识点的理解。[详细]
举一反三
用二分法求函数f(x)在区间(2,4)上的近似解,验证f(2)•f(4)<0,给定精确度ɛ=0.01,取区间(2,4)的中点x1=
2+4
2
=3,计算得f(2).f(x1)<0,f(x1)•f(4)>0则此时零点x0∈______.(填区间)
题型:填空题难度:一般| 查看答案
下列函数中不能用二分法求零点的是(  )
A.f(x)=2x+3B.f(x)=mx+2x-6C.f(x)=x2-2x+1D.f(x)=2x-1
题型:单选题难度:简单| 查看答案
为了计算函数f(x)=x3+x2-2x-2在区间[1,1.5]内的零点的近似值,用二分法计算的部分函数值的数据如下表:
题型:填空题难度:简单| 查看答案
题型:单选题难度:一般| 查看答案
f(1)=-2f(1.5)=0.625f(1.25)=-0.984
f(1.375)=-0.260f(1.4375)=0.162f(1.40625)=-0.054
(重点中学做) 用二分法求函数f(x)=
π
2
-x-cosx(x>0)
在区间[0,2π]内的零点,二分区间[0,2π]的次数为(  )
A.1B.2C.3D.4
下列是函数f(x)(连续不断的函数)在区间[1,2]上一些点的函数值
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x11.251.371.4061.4381.51.621.751.8752
f(x)-2-0.9840.260-0.0520.1650.6251.9852.6454.356