当前位置:高中试题 > 数学试题 > 函数的零点 > 已知函数f(x)=ex+ax,g(x)=exlnx(e是自然对数的底数).(1)若曲线y=f(x)在x=1处的切线也是抛物线y2=4(x-1)的切线,求a的值;...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=ex+ax,g(x)=exlnx(e是自然对数的底数).
(1)若曲线y=f(x)在x=1处的切线也是抛物线y2=4(x-1)的切线,求a的值;
(2)当a=-1时,是否存在x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x=x0处的切线斜率与f(x) 在R上的最小值相等?若存在,求符合条件的x0的个数;若不存在,请说明理由.
答案
(1)f′(x)=ex+a,把x=1代入得:f′(1)=e+a,
把x=1代入f(x)得:f(1)=e+a,所以切点坐标为(1,e+a),
则在x=1处的切线为y-(e+a)=(e+a)(x-1)即:y=(e+a)x,
与y2=4(x-1)联立,消去得(e+a)2x2-4x+4=0,
由△=0知,a=1-e或a=-1-e;
(2)当a=-1时,由(2)知[f(x)]min=f(ln(-a))=-a+aln(-a)=1,
设h(x)=g(x)-f(x)=exlnx-ex+x,
h′(x)=exlnx-ex
1
x
-ex+1
=ex(lnx+
1
x
-1)+1

假设存在实数x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x=x0处的切线斜率与f(x)在R上的最小值相等,
x0即为方程的解,(13分)
令h′(x)=1得:ex(lnx+
1
x
-1)=0
,因为ex>0,所以lnx+
1
x
-1=0

φ(x)=lnx+
1
x
-1
,则φ′(x)=
1
x
-
1
x2
=
x-1
x2

当0<x<1是φ′(x)<0,当x>1时φ′(x)>0,
所以φ(x)=lnx+
1
x
-1
在(0,1)上单调递减,在(1,+∞)上单调递增,
∴φ(x)>φ(1)=0,故方程ex(lnx+
1
x
-1)=0
有唯一解为1,
所以存在符合条件的x0,且仅有一个x0=1.
核心考点
试题【已知函数f(x)=ex+ax,g(x)=exlnx(e是自然对数的底数).(1)若曲线y=f(x)在x=1处的切线也是抛物线y2=4(x-1)的切线,求a的值;】;主要考察你对函数的零点等知识点的理解。[详细]
举一反三
若函数f(x)=ax2-x-1有且仅有一个零点,求实数a的值;
题型:解答题难度:一般| 查看答案
方程2x=x+3的一个根所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)
题型:单选题难度:一般| 查看答案
已知函数f(x)=lnx-
1
2
ax2-2x(a<0)
(Ⅰ)若函数f(x)存在单调递减区间,求a的取值范围;
(Ⅱ)若a=-
1
2
且关于x的方程f(x)=-
1
2
x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.
题型:解答题难度:一般| 查看答案
已知向量


m
=(sinx,-1)
,向量


n
=(


3
cosx,
1
2
)
,函数f(x)=(


m
+


n
)


m

(Ⅰ)求f(x)的最小正周期T;
(Ⅱ)若方程f(x)-t=0在x∈[
π
4
π
2
]
上有解,求实数t的取值范围.
题型:解答题难度:一般| 查看答案
设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m<n).
(1)若m=-1,n=2,求不等式F(x)>0的解集;
(2)若a>0且0<x<m<n<
1
a
,比较f(x)与m的大小.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.