当前位置:高中试题 > 数学试题 > 函数的零点 > 设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m<n).(1)若m=-1,n=2,求不等式F(x)>0的解集;(2)若a>...
题目
题型:解答题难度:一般来源:不详
设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m<n).
(1)若m=-1,n=2,求不等式F(x)>0的解集;
(2)若a>0且0<x<m<n<
1
a
,比较f(x)与m的大小.
答案
(1)由题意知,F(x)=f(x)-x=a(x-m)(x-n)
当m=-1,n=2时,不等式F(x)>0
即为a(x+1)(x-2)>0.
当a>0时,不等式F(x)>0的解集为{x|x<-1,或x>2};
当a<0时,不等式F(x)>0的解集为{x|-1<x<2}.
(2)f(x)-m=a(x-m)(x-n)+x-m=(x-m)(ax-an+1)
∵a>0,且0<x<m<n<
1
a
,0<ax<am<an<1;
∴x-m<0,an<1,∴1-an+ax>0
∴f(x)-m<0,即f(x)<m.
核心考点
试题【设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m<n).(1)若m=-1,n=2,求不等式F(x)>0的解集;(2)若a>】;主要考察你对函数的零点等知识点的理解。[详细]
举一反三
已知函数f(x)=x3-3x2+1,g(x)=





(x-
1
2
)2+1(x>0)
-(x+3)2+1(x≤0)
,则方程g[f(x)]-a=0(a为正实数)的实数根最多有(  )个.
A.6个B.4个C.7个D.8个
题型:单选题难度:简单| 查看答案
(理) 已知函数f(x)=x-ln(x+a)在x=1处取得极值.
(1)求实数a的值;
(2)若关于x的方程f(x)+2x=x2+b在[
1
2
,2]
上恰有两个不相等的实数根,求实数b的取值范围.
题型:解答题难度:一般| 查看答案
已知x=1是函数f(x)=
1
2
x2-6x+mlnx
的一个极值点.
(Ⅰ)求m;
(Ⅱ)若直线y=n与函数y=f(x)的图象有3个交点,求n的取值范围;
(Ⅲ)设g(x)=(-5-a)lnx+
1
2
x2
+(6-b)x+2(a>0),G(x)=f(x)+g(x),若G(x)=0有两个不同零点x1,x2,且x0=
x1+x2
2
,试探究G′(x0)值的符号.
题型:解答题难度:一般| 查看答案
已知f(x)=ex-ax(e=2.718…)
(I)讨论函数f(x)的单调区间;
(II)若函数f(x)在区间(0,2)上有两个零点,求a的取值范围;
(Ⅲ) A(xl,yl),B(x2,y2)是f(x)的图象上任意两点,且x1<x2,若总存在xo∈R,使得f′(xo)=
y1-y2
x1-x2
,求证:xo>xl
题型:解答题难度:一般| 查看答案
已知函数f(x)=ex+x,g(x)=ln x+x,h(x)=ln x-1的零点依次为a,b,c,则(  )
A.a<b<cB.c<b<aC.c<a<bD.b<a<c
题型:单选题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.