当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 已知二次函数g(x)的图象经过坐标原点,且满足g(x+1)=g(x)+2x+1,设函数f(x)=mg(x)-ln(x+1),其中m为非零常数.(Ⅰ)求函数g(x...
题目
题型:解答题难度:困难来源:湖南省模拟题
已知二次函数g(x)的图象经过坐标原点,且满足g(x+1)=g(x)+2x+1,设函数f(x)=mg(x)-ln(x+1),其中m为非零常数.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若f(x)为单调减函数,求m的范围;
(Ⅲ)当m>0,x∈[0,1]时,求f(x)的最大值。
答案
解:(Ⅰ)设g(x)=ax2+bx+c,g(x)的图象经过坐标原点,所以,c=0,
∵g(x+1)=g(x)+2x+1,
∴a(x+1)2+b(x+1)=ax2+bx+2x+1,
即:ax2+(2a+b)x+a+b=ax2+(b+2)x+l,
∴a=1,b=0,g(x)=x2
(Ⅱ)函数f(x)=mx2-ln(x+1)的定义域为(-1,+∞),
令ψ(x)=2mx2+2mx-1,
由已知f′(x)≤0在(-1,+∞)上恒成立,
即ψ(x)=2mx2+2mx-l≤0在(-1,+∞)上恒成立,
①当m>0时,不符合条件;

 ②当m<0,ψ(x)的图象如下,

只需

∴m≥-2,
综上:-2≤m<0。
(Ⅲ)由已知
①ψ(1)=4m-1≤0时,即0<m≤时,f(x)′≤0在[0,1]上恒成立,
f(x)在[0,1]上递减,f(x)max=f(0)=0;
②当m>时,

,设
则f(x)在
f(0)=0,f(1)=m-ln2,
<m<ln2时,f(x)max=f(0)=0;
当m≥ln2时,f(x)max=f(1)=m-ln2;
综上:0<m<ln2时,f(x)max=f(0)=0;m≥ln2时,f(x)max=f(1)=m-ln2.
核心考点
试题【已知二次函数g(x)的图象经过坐标原点,且满足g(x+1)=g(x)+2x+1,设函数f(x)=mg(x)-ln(x+1),其中m为非零常数.(Ⅰ)求函数g(x】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
已知二次函数f(x)=ax2+2x+c(x∈R)的值域为[0,+∞),则f(1)的最小值为(    )。
题型:填空题难度:一般| 查看答案
已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1,令f(x)=g(x+)+mlnx+(m∈R),
(Ⅰ)求g(x)的表达式;
(Ⅱ)若x>0使f(x)≤0成立,求实数m的取值范围;
(Ⅲ)设1<m≤e,H(x)=f(x)-(m+1)x,证明:对x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1。
题型:解答题难度:困难| 查看答案
设函数f(x)=x2-ax+a+3,g(x)=ax-2a,若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是(    )。
题型:填空题难度:一般| 查看答案
函数y=ax2+bx与(ab≠0,|a|≠|b|)在同一直角坐标系中的图象可能是 [     ]
A、
B、
C、
D、
题型:单选题难度:一般| 查看答案
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上。在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶,假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇。
 (I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
 (Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
 (Ⅲ)是否存在v,使得小艇以v海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由。
题型:解答题难度:困难| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.