当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 已知函数f(x)=x2-2|x|-1,(-3≤x≤3),(Ⅰ)指出函数的奇偶性并画出其简图;(Ⅱ)若y=a与函数f(x)的图象有两个交点求实数a的取值范围....
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=x2-2|x|-1,(-3≤x≤3),
(Ⅰ)指出函数的奇偶性并画出其简图;
(Ⅱ)若y=a与函数f(x)的图象有两个交点求实数a的取值范围.
答案
(I)∵函数f(x)=x2-2|x|-1,(-3≤x≤3)的定义域关于原点对称,
且f(-x)=(-x)2-2|-x|-1=x2-2|x|-1=f(x)
故函数为偶函数,其简图如下图所示:

魔方格

(II)由(I)中函数的简图可得
当a<-2时,y=a与函数f(x)的图象没有交点;
当a=-2时,y=a与函数f(x)的图象有两个交点;
当-2<a<-1时,y=a与函数f(x)的图象有四个交点;
当a=-1时,y=a与函数f(x)的图象有三个交点;
当a>-1时,y=a与函数f(x)的图象有两个交点;
故满足条件的实数a的取值范围是,a>-1或a=-2
核心考点
试题【已知函数f(x)=x2-2|x|-1,(-3≤x≤3),(Ⅰ)指出函数的奇偶性并画出其简图;(Ⅱ)若y=a与函数f(x)的图象有两个交点求实数a的取值范围.】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
已知函数y=cos2x+asinx-a2+2a+5有最大值2,试求实数a的值.
题型:解答题难度:一般| 查看答案
已知a>0,函数f(x)=x|x-a|+1(x∈R).
(1)当a=1时,求所有使f(x)=x成立的x的值;
(2)当a∈(0,3)时,求函数y=f(x)在闭区间[1,2]上的最小值;
(3)试讨论函数y=f(x)的图象与直线y=a的交点个数.
题型:解答题难度:一般| 查看答案
对于任意a∈[-1,1],函数f (x)=x2+(a-4)x+4-2a的值总大于0,则x的取值范围是(  )
A.{x|1<x<3}B.{x|x<1或x>3}C.{x|1<x<2}D.{x|x<1或x>2}
题型:解答题难度:一般| 查看答案
已知函数f(x)=
1
2
x2-x+
3
2

(Ⅰ)写出函数f(x)的图象的顶点坐标及其单调递增、递减区间;
(Ⅱ)若函数的定义域和值域都是[1,a](a>1),求a的值.
题型:解答题难度:一般| 查看答案
已知二次函数f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两个实数根为x1和x2
(1)如果x1<2<x2<4,设二次函数f(x)的对称轴为x=x0,求证:x0>-1;
(2)如果|x1|<2,|x2-x1|=2,求b的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.