当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 若方程x2-(m+1)x+4=0在(0,3]上有两个不相等的实数根,则m的取值范围为(  )A.(3,103)B.[3,103)C.[3,103]D.(3,10...
题目
题型:单选题难度:简单来源:不详
若方程x2-(m+1)x+4=0在(0,3]上有两个不相等的实数根,则m的取值范围为(  )
A.(3,
10
3
B.[3,
10
3
C.[3,
10
3
]
D.(3,
10
3
]
答案
∵x2-(m+1)x+4=0在(0,3]上有两个不相等的实数
∴(m+1)=
x2+4
x
=x+
4
x

令f(x)=x+
4
x
,x∈(0,3],则由题意可得y=m+1与y=f(x)在(0,3]上有2个交点
∵f(x)在(0,2]上单调递减,在[2,3]上单调递增
∴f(x)min=f(2)=4
∵f(3)=
13
3

4<m+1≤
13
3

3<m≤
10
3

故选D
核心考点
试题【若方程x2-(m+1)x+4=0在(0,3]上有两个不相等的实数根,则m的取值范围为(  )A.(3,103)B.[3,103)C.[3,103]D.(3,10】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
已知直线l:y=k (x+2


2
)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.
(Ⅰ)试将S表示成的函数S(k),并求出它的定义域;
(Ⅱ)求S的最大值,并求取得最大值时k的值.
题型:解答题难度:一般| 查看答案
等差数列{an}的前n项和为Sn,若S5=35,点A(3,a3)与B(5,a5)都在斜率为-2的直线l上,则使Sn取得最大值的n值为(  )
A.6B.7C.5,6D.7,8
题型:单选题难度:一般| 查看答案
二次函数f(x)=ax2-bx-c(a、b、c∈R),若a、b、c成等比数列且f(0)=1,则函数f(x)的最大值为 ______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=ax2+2x+1(a∈R).
(1)若f(x)的图象与x轴恰有一个公共点,求a的值;
(2)若方程f(x)=0至少有一正根,求a的范围.
题型:解答题难度:一般| 查看答案
已知二次函数f(x)=ax2+bx+c和“伪二次函数”g(x)=ax2+bx+clnx(a、b、c∈R,abc≠0),
(I)证明:只要a<0,无论b取何值,函数g(x)在定义域内不可能总为增函数;
(Ⅱ)在二次函数f(x)=ax2+bx+c图象上任意取不同两点A(x1,y1),B(x2,y2),线段AB中点的横坐标为x0,记直线AB的斜率为k,(i)求证:k=f′(x0);(ii)对于“伪二次函数”g(x)=ax2+bx+clnx,是否有(i)同样的性质?证明你的结论.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.