当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a,b,c∈R.且满足a>b>c,f(1)=0.(Ⅰ)证明:当a=3、b=2时函数f(x)...
题目
题型:解答题难度:一般来源:不详
已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a,b,c∈R.且满足a>b>c,f(1)=0.
(Ⅰ)证明:当a=3、b=2时函数f(x)与g(x)的图象交于不同的两点A,B.
(Ⅱ)若函数F(x)=f(x)-g(x)在[2,3]上的最小值是9,最大值为21,试求a,b的值.
答案
证明:(Ⅰ)由已知3x2+2x+c=-2x
即3x2+4x+c=0.且a+b+c=0,所以c=-5(2分)
△=4b2-4ac>0
因此函数f(x)与g(x)图象交于不同的两点A、B.(6分)
(Ⅱ)由题意知,F(x)=ax2+2bx+c
∴函数F(x)的图象的对称轴方程为∵x=-
b
a

又∵a+b+c=0
∴x=
a+c
a
=1+
c
a
<1(8分)
又a>0
∴F(x)在[2,3]单增





f(2)=9
f(3)=21
(10分)





3a+3b=9
8a+5b=21






a=2
b=1
(12分)
核心考点
试题【已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a,b,c∈R.且满足a>b>c,f(1)=0.(Ⅰ)证明:当a=3、b=2时函数f(x)】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
已知二次函数的对称轴为x=-


2
,截x轴上的弦长为4,且过点(0,-1),求函数的解析式.
题型:解答题难度:一般| 查看答案
若m,n是关于x的方程x2-2ax+a+6=0的两个实根,则(m-1)2+(n-1)2的最小值是______.
题型:解答题难度:一般| 查看答案
已知二次函数y=ax2+bx+c的图象经过(-1,0),存在常数a,b,c使得不等式x≤y≤
1
2
(1+x2)
对一切实数x都成立,求常数a,b,c的值.
题型:解答题难度:一般| 查看答案
已知二次函数f(x)=ax2+bx+c=0(a>0),满足关系f(2+x)=f(2-x),试比较f(0.5)与f(π)的大小.
题型:解答题难度:一般| 查看答案
已知3x2+2y2=6x,试求x2+y2的最大值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.