当前位置:高中试题 > 数学试题 > 一次函数的图象和性质 > (本题满分14分)已知函数的图像过点(1,3),且对任意实数都成立,函数与的图像关于原点对称.(Ⅰ)求与的解析式;(Ⅱ)若在[-1,1]上是增函数,求实数λ的...
题目
题型:解答题难度:一般来源:不详
(本题满分14分)已知函数的图像过点(1,3),且对任意实数都成立,函数的图像关于原点对称.
(Ⅰ)求的解析式;
(Ⅱ)若在[-1,1]上是增函数,求实数λ的取值范围.
答案

(1)
(2)
解析
解:⑴由题意知:
设函数图象上的任意一点关于原点的对称点为P(x,y),
,                           ……………………4分
因为点 


连续,恒成立……9分
,………………..10分
上为减函数,………………..12分
时取最小值0,………………..13分

另解:
,解得
核心考点
试题【 (本题满分14分)已知函数的图像过点(1,3),且对任意实数都成立,函数与的图像关于原点对称.(Ⅰ)求与的解析式;(Ⅱ)若在[-1,1]上是增函数,求实数λ的】;主要考察你对一次函数的图象和性质等知识点的理解。[详细]
举一反三
不等式的解集为,则函数的图象为(    )
题型:单选题难度:一般| 查看答案
若函数为偶函数,其定义域为,则的最小值为(   )
A.3B.0 C.2D.-1

题型:单选题难度:一般| 查看答案
若函数是偶函数,那么是(  )
A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数

题型:单选题难度:简单| 查看答案
已知,则        
题型:填空题难度:简单| 查看答案
(本小题满分10分)
已知二次函数满足;方程有两个实根,且两实根的平方和为10.
(1)求函数的解析式;
(2)若关于的方程在区间内有两个不等实根,求实数的取值范围.
题型:解答题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.