当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=ln(ex+k)(k为常数)是实数集R上的奇函数(1)求k的值(2)若函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数,且g(x...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=ln(ex+k)(k为常数)是实数集R上的奇函数
(1)求k的值
(2)若函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数,且g(x)≤t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围
(3)讨论关于x的方程
lnx
f(x)
=x2-2ex+m
的根的个数.
答案
(1)因为函数f(x)=ln(ex+k)(k为常数)是实数集R上的奇函数,
所以f(-0)=-f(0)即f(0)=0,
则ln(e0+k)=0解得k=0,
显然k=0时,f(x)=x是实数集R上的奇函数;
(2)由(1)得f(x)=x所以g(x)=λx+sinx,g"(x)=λ+cosx,
因为g(x) 在[-1,1]上单调递减,∴g"(x)=λ+cosx≤0  在[-1,1]上恒成立,
∴λ≤-1,g(x)max=g(-1)=-λ-sin1,
只需-λ-sin1≤t2+λt+1(λ≤-1),
∴(t+1)λ+t2+sin1+1≥0(λ≤-1)恒成立,
令h(λ)=(t+1)λ+t2+sin1+1(λ≤-1)





t+1≤0
h(-1)=-t-1+t2+sin1+1≥0
解得t≤-1
(3)由(1)得f(x)=x
∴方程转化为
lnx
x
=x2-2ex+m,令F(x)=
lnx
x
(x>0),G(x)=x2-2ex+m  (x>0),(8分)
∵F"(x)=
1-lnx
x2
,令F"(x)=0,即
1-lnx
x2
=0,得x=e
当x∈(0,e)时,F"(x)>0,∴F(x)在(0,e)上为增函数;
当x∈(e,+∞)时,F"(x)<0,F(x)在(e,+∞)上为减函数;(9分)
当x=e时,F(x)max=F(e)=
1
e
(10分)
而G(x)=(x-e)2+m-e2   (x>0)
∴G(x)在(0,e)上为减函数,在(e,+∞)上为增函数;(11分)
当x=e时,G(x)min=m-e2(12分)
∴当m-e2
1
e
,即m>e2+
1
e
时,方程无解;
当m-e2=
1
e
,即m=e2+
1
e
时,方程有一个根;
当m-e2
1
e
,即m<e2+
1
e
时,方程有两个根;(14分)
核心考点
试题【已知函数f(x)=ln(ex+k)(k为常数)是实数集R上的奇函数(1)求k的值(2)若函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数,且g(x】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
如果f(x)为偶函数,且f(x)导数存在,则f′(0)的值为(  )
A.2B.1C.0D.-1
题型:单选题难度:简单| 查看答案
已知函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=|x|,则函数y=f(x)与y=log5x的图象的交点的个数为(  )
A.1B.2C.3D.4
题型:单选题难度:一般| 查看答案
已知函数f(x)=(2-a)lnx+
1
x
+2ax(a∈R).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a<0时,求f(x)单调区间;
(Ⅲ)若对任意a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
(选做题)已知函数f(x)=|2x-1|+2,g(x)=-|x+2|+3.
(Ⅰ)解不等式:g(x)≥-2;
(Ⅱ)当x∈R时,f(x)-g(x)≥m+2恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数)使得f(x)≥g(x)对任意的x∈R都成立,则称
g(x)为函数f(x)的一个承托函数.以下说法
(1)函数f(x)=x2-2x不存在承托函数;
(2)函数f(x)=x3-3x不存在承托函数;
(3)函数f(x)=
2x
x2-x+1
不存在承托函数;
(4)g(x)=1为函数f(x)=x4-2x3+x2+1的一个承托函数;
(5)g(x)=x为函数f(x)=ex-1的一个承托函数.
中正确的个数为(  )
A.1B.2C.3D.4
题型:单选题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.