当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=x2+|x-a|-1(1)求能使f(x)成为偶函数的a的值,并写出此时函数的单调递增区间;(2)求a=2时函数f(x)的最小值....
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=x2+|x-a|-1
(1)求能使f(x)成为偶函数的a的值,并写出此时函数的单调递增区间;
(2)求a=2时函数f(x)的最小值.
答案

魔方格
(1)当a=0时,f(-x)=x2+|x|+1=f(x),此时f(x)为偶函数;当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),且f(-a)≠-f(a),此时函数f(x)无奇偶性,
∴能使f(x)成为偶函数的a的值为0,此时,f(x)=x2+|x|-1=





x2+x-1,x≥0
x2-x-1,x<0

函数的图象如图所示,∴函数的单调增区间是[0,+∞);
(2)a=2时,f(x)=





x2+x-3,x≥2
x2-x+1,x<2

当x<2时,f(x)
3
4

;当x≥2时,f(x)≥3,
∴函数的最小值为
3
4
核心考点
试题【已知函数f(x)=x2+|x-a|-1(1)求能使f(x)成为偶函数的a的值,并写出此时函数的单调递增区间;(2)求a=2时函数f(x)的最小值.】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
(Ⅰ)已知函数f(x)=x-2sinx.求证:y=x+2为曲线f(x)的“上夹线”.
(Ⅱ)观察下图:

魔方格

根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并给出证明.
题型:解答题难度:一般| 查看答案
下列函数是偶函数且在区间(0,1)上是增函数的是(  )
A.y=cosxB.y=|x+1|C.y=ln
2+x
2-x
D.y=ex+e-x
题型:单选题难度:一般| 查看答案
已知函数f(x)是R上的偶函数,且f(1-x)=f(1+x),当x∈[0,1]时,f(x)=x2,则函数y=f(x)-log5x在区间[0,5]的零点个数是(  )
A.3B.4C.5D.6
题型:单选题难度:简单| 查看答案
已知f(x)是定义在R上的且以2为周期的偶函数,当0≤x≤1时,f(x)=x2,如果直线y=x+a与曲线y=f(x)恰有两个不同的交点,则实数a的值为(  )
A.2k(k∈Z)B.2k或2k+
1
4
(k∈Z)
C.0D.2k或2k-
1
4
(k∈Z)
题型:单选题难度:一般| 查看答案
给出下列函数 ①y=x-x3,②y=xsinx+cosx,③y=sinxcosx,④y=2x+2-x,其中是偶函数的有(  )
A.1个B.2个C.3个D.4个
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.