当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=x2-(a+1)x+a,其中a为实常数.(1)解关于x的不等式f(x)<0;(2)若不等式f(x)≥x-2对任意x>1恒成立,求a的取值范围....
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=x2-(a+1)x+a,其中a为实常数.
(1)解关于x的不等式f(x)<0;
(2)若不等式f(x)≥x-2对任意x>1恒成立,求a的取值范围.
答案
(1)由题意,(x-a)(x-1)<0
①当a>1时,不等式的解集为{x|1<x<a}
②当a=1时,不等式的解集为∅
③当a<1时,不等式的解集为{x|a<x<1}
(2)不等式f(x)≥x-2对任意x>1恒成立,即x2-(a+1)x+a≥x-2对任意x>1恒成立
将参数a分离出来,即x2-2x+2≥a(x-1)
由于x>1,所以a≤
x2-2x+2
x-1

∵x>1,∴
x2-2x+2
x-1
=(x-1)+
1
x-1
≥2

所以
x2-2x+2
x-1
)的最小值为2,当且仅当x=2时,取得最小值.
所以a≤2
核心考点
试题【已知函数f(x)=x2-(a+1)x+a,其中a为实常数.(1)解关于x的不等式f(x)<0;(2)若不等式f(x)≥x-2对任意x>1恒成立,求a的取值范围.】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
f(x),g(x)(g(x)≠0)分别是定义在R上的奇函数和偶函数,当x<0,f′(x)g(x)-f(x)g′(x)<0且f(-2)=0,则不等式
f(x)
g(x)
<0
的解集为(  )
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)
题型:单选题难度:一般| 查看答案
已知f(x)=a-
2
2x+1
(x∈R)
是奇函数,则lna=______.
题型:填空题难度:一般| 查看答案
函数f(x)=x3+x,x∈R,当0≤θ≤
π
2
时,f(msinθ)+f(1-m)>0恒成立,则实数m的取值范围是(  )
A.(0,1)B.(-∞,0)C.(-∞,
1
2
)
D.(-∞,1)
题型:单选题难度:简单| 查看答案
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点,已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)当a=1,b=-2求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异不动点,求a的取值范围;
(3)在(2)的条件下,令g(x)=
1
x+2
+loga 
1+x
1-x
,解关于x的不等式g[x(x-
1
2
)]<
1
2
题型:解答题难度:一般| 查看答案
下列函数具有奇偶性的是(  )
①y=xn,n∈Z②y=


x
y=


1-x2
x
y=
cos2x
1-sinx
-1
A.②③B.①④C.①③④D.①③
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.