当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知定义在[-3,-1)∪(1,3]上的偶函数f(x)的图象过点(2,0),当x>0时f(x)的图象如图所示,那么不等式f(x)>0的解集是______....
题目
题型:填空题难度:简单来源:不详
已知定义在[-3,-1)∪(1,3]上的偶函数f(x)的图象过点(2,0),当x>0时f(x)的图象如图所示,那么不等式f(x)>0的解集是______.魔方格
答案
该函数是偶函数,
偶函数的图象关于y轴对称,在对称的区间上单调性相反
魔方格

画出图象,
结合图象可得不等式f(x)>0的解集[-3,-2]∪(2,3]
故答案为:[-3,-2]∪(2,3]
核心考点
试题【已知定义在[-3,-1)∪(1,3]上的偶函数f(x)的图象过点(2,0),当x>0时f(x)的图象如图所示,那么不等式f(x)>0的解集是______.】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
奇函数f (x)在区间[-b,-a]上单调递减,且f (x)>0,(0<a<b),那么|f (x)|在区间[a,b]上是(  )
A.单调递增B.单调递减C.不增也不减D.无法判断
题型:单选题难度:简单| 查看答案
已知函数f(x)=xm-
4
x
,且f(4)=3
(1)求m的值;
(2)证明f(x)的奇偶性;
(3)判断f(x)在(0,+∞)上的单调性,并给予证明.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x2+bx+c(b,c∈R)为偶函数,如果点A(x,y)在函数f(x)的图象上,且点B(x,y2+1)在g(x)=f(x2+c)的图象上.
(1)求函数f(x)的解析式;
(2)设F(x)=g(x)-λf(x).是否存在实数λ,使F(x)在(-∞,-


2
2
)
上为减函数,且在[-


2
2
,0)
上为增函数?若存在,求出λ的值;若不存在,请说明理由.
题型:解答题难度:一般| 查看答案
设f(x)是奇函数,当x>0时,f(x)=log2x,则当x<0时,f(x)等于(  )
A.-log2xB.log2(-x)C.logx2D.-log2(-x)
题型:单选题难度:简单| 查看答案
已知数列{an}的前n项为和Sn,点(n,
Sn
n
)
在直线y=
1
2
x+
11
2
上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和为153.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设cn=
3
(2an-11)(2bn-1)
,数列{cn}的前n和为Tn,求使不等式Tn
k
57
对一切n∈N*都成立的最大正整数k的值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.