当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知奇函数f(x)满足f(x+1)=f(x-1),给出以下命题:①函数f(x)是周期为2的周期函数;             ②函数f(x)的图象关于直线x=1...
题目
题型:填空题难度:一般来源:不详
已知奇函数f(x)满足f(x+1)=f(x-1),给出以下命题:
①函数f(x)是周期为2的周期函数;            
②函数f(x)的图象关于直线x=1对称;
③函数f(x)的图象关于点(k,0)(k∈Z)对称;
④若函数f(x)是(0,1)上的增函数,则f(x)是(3,5)上的增函数,其中正确命题有______.
答案
∵f(x+1)=f(x-1),
∴f(x)=f(x+2),
∴①函数f(x)是周期为2的周期函数,即①正确;
又f(x)=-f(-x),
∴f(x+1)=f(x-1)=-f(1-x)≠f(1-x),
∴函数f(x)的图象不关于直线x=1对称,故②错误;
又f(x)=f(x+2k),
∴f(x-k)=f(x+k)=-f(k-x),
∴f(k+x)=-f(k-x),
∴f(x)关于点(k,0)对称,即③正确;
对于④,∵f(x)在(0,1)单调递增,f(x)为奇函数,
∴f(x)在(-1,0)上单调递增,又函数f(x)是周期为2的周期函数,
∴f(x)在(1,2)单调递增,f(x)在(2,3)上单调递增,但不能确定f(x)在(1,3)的单调性.
由上面的分析可得,f(x)在(3,5)的单调性与(1,3)的单调性相同,故④错误;
综上所述,①③正确.
故答案为:①③.
核心考点
试题【已知奇函数f(x)满足f(x+1)=f(x-1),给出以下命题:①函数f(x)是周期为2的周期函数;             ②函数f(x)的图象关于直线x=1】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
f(x)是偶函数,且f(x)在(0,+∞)上是增函数,若x∈[
1
2
,1]时,不等式f(ax+1)≤f(x-2)恒成立,则实数a的取值范围是______.
题型:填空题难度:一般| 查看答案
已知f(x)是定义在[-e,e]上的奇函数,当x∈(0,e)时,f(x)=ex+lnx,其中e是自然对数的底数.
(1)求f(x)的解析式;
(2)求f(x)的图象在点P(-1,f(-1))处的切线方程.
题型:解答题难度:一般| 查看答案
设函数f(x)=x3-3ax2+3b2x
(1)若a=1,b=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若0<a<b,不等式,f(
1+lnx
x-1
)>f(
k
x
)对任意x∈(1,+∞)恒成立,求整数k的最大值.
题型:解答题难度:一般| 查看答案
如图,在△ABC中,AB=
2
3
AC
,D、E分别为边AB、AC的中点,CD与BE相交于点P,
(1)若AB=2,四边形ADPE的面积记为S(A),试用角A表示出S(A),并求S的最大值;
(2)若
BE
CD
<t
恒成立,求t的最小值.魔方格
题型:解答题难度:一般| 查看答案
如图,在大沙漠上进行勘测工作时,先选定一点作为坐标原点,然后采用如下方法进行:从原点出发,在x轴上向正方向前进a(a>0)个单位后,向左转90°,前进a r(0<r<1=个单位,再向左转90°,又前进a r2个单位,…,如此连续下去.
(1)若有一小分队出发后与设在原点处的大本营失去联系,且可以断定此小分队的行动与原定方案相同,则大本营在何处寻找小分队?
(2)若其中的r为变量,且0<r<1,则行动的最终目的地在怎样的一条曲线上?魔方格
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.