当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=12对称,则f(1)+f(2)+f(3)+f(4)+f(5)=______....
题目
题型:填空题难度:简单来源:天津
设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=
1
2
对称,则f(1)+f(2)+f(3)+f(4)+f(5)=______.
答案
f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=
1
2
对称,
∴f(-x)=-f(x),f(
1
2
+x)=f(
1
2
-x)⇒f(x)=f(1-x)

∴f(-x)=f(1+x)=-f(x)f(2+x)=-f(1+x)=f(x),
∴f(0)=f(1)=f(3)=f(5)=0,f(0)=f(2)=f(4)=0,
所以f(1)+f(2)+f(3)+f(4)+f(5)=0
故答案为:0
核心考点
试题【设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=12对称,则f(1)+f(2)+f(3)+f(4)+f(5)=______.】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知f(x)、g(x)都是奇函数,f(x)>0的解集是(a2,b),g(x)>0的解集是(
a2
2
b
2
),且b>2a2,则f(x)•g(x)>0的解集是______.
题型:填空题难度:一般| 查看答案
设定义在(-1,1)上的奇函数f (x)的导函数f′(x)=5+cosx,且f (0)=0,则不等式f (x-1)+f (1-x2)<0的
解集为______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=x3-3ax2-9a2x+a3
(1)设a=1,求函数f(x)的极值;
(2)若a>
1
4
,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,试确定a的取值范围.
题型:解答题难度:一般| 查看答案
已知f(x)=lnx+2-x,若x>0,f(x)<a2恒成立,则实数a的取值范围是______.
题型:填空题难度:一般| 查看答案
函数f(x)对任意实数x、y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)当x∈(0,  
1
2
)
时,f(x)+2<a恒成立,求a的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.