当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 若x∈R,n∈N*,规定:Hnx=x(x+1)(x+2)…(x+n-1),例如:H4-4=(-4)•(-3)•(-2)•(-1)=24,则f(x)=x•H5x-...
题目
题型:单选题难度:简单来源:不详
若x∈R,n∈N*,规定:
Hnx
=x(x+1)(x+2)…(x+n-1),例如:
H4-4
=(-4)•(-3)•(-2)•(-1)=24,则f(x)=x•
H5x-2
的奇偶性为(  )
A.是奇函数不是偶函数
B.是偶函数不是奇函数
C.既是奇函数又是偶函数
D.既不是奇函数又不是偶函数
答案
由定义可知,f(x)=x•
H5x-2
=x(x-2)(x-1)(x)(x+1)(x+2)=x2(x2-1)(x2-4),
因为f(-x)=x2(x2-1)(x2-4)=f(x),
所以函数f(x)是偶函数不是奇函数.
故选B.
核心考点
试题【若x∈R,n∈N*,规定:Hnx=x(x+1)(x+2)…(x+n-1),例如:H4-4=(-4)•(-3)•(-2)•(-1)=24,则f(x)=x•H5x-】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
定义Mxn=x(x+1)(x+2)…(x+n-1),其中x∈R,n∈N*,例如M-44=(-4)(-3)(-2)(-1)=24,则函数f(x)=Mx-10042009的奇偶性为______.
题型:填空题难度:简单| 查看答案
设函数f(x)是定义在R上的奇函数,且f(-3)=2,则f(3)+f(0)=(  )
A.3B.-3C.2D.-2
题型:单选题难度:简单| 查看答案
已知函数f(x)的定义域为(-∞,0)∪(0,+∞)且对定义域中任意x均有:f(x)•f(-x)=1,
g(x)=
f(x)-1
f(x)+1
,则g(x)(  )
A.是奇函数B.是偶函数
C.既是奇函数又是偶函数D.既非奇函数又非偶函数
题型:单选题难度:一般| 查看答案
已知偶函数f(x)在区间[0,π]上单调递增,那么下列关系成立的是(  )
A.f(-π)>f(-2)>f(
π
2
)
B.f(-π)>f(-
π
2
)>f(-2)
C.f(-2)>f(-
π
2
)>f(-π)
D.f(-
π
2
)>f(-2)>f(π)
题型:单选题难度:简单| 查看答案
已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-
1
2
的解集是(  )
A.(-∞,-1)B.(-∞,-1]C.(1,+∞)D.[1,+∞)
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.