当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知f(x)=ln(x+1)-ax(a∈R)(1)当a=1时,求f(x)在定义域上的最大值;(2)已知y=f(x)在x∈[1,+∞)上恒有f(x)<0,求a的取...
题目
题型:解答题难度:一般来源:不详
已知f(x)=ln(x+1)-ax(a∈R)
(1)当a=1时,求f(x)在定义域上的最大值;
(2)已知y=f(x)在x∈[1,+∞)上恒有f(x)<0,求a的取值范围;
(3)求证:
12+1+1
12+1
22+2+1
22+2
32+3+1
32+3
•…•
n2+n+1
n2+n
<e
答案
(1)∵f(x)=ln(x+1)-ax(a∈R),a=1,
f(x)=
1
1+x
-1=
-x
1+x

f(x)=
-x
1+x
>0,得-1<x<0;由f(x)=
-x
1+x
<0,得x>0;
所以y=f(x)在(-1,0)为增,在(0,+∞)为减,
所以x=0时,f(x)取最大值0.
(2)y=f(x)在x∈[1,+∞)上恒有f(x)<0,
等价于a>
ln(x+1)
x
恒成立,
g(x)=
ln(x+1)
x
g(x)=
x
1+x
-ln(x+1)
x2

h(x)=
x
1+x
-ln(x+1)⇒h(x)=
1
(1+x)2
-
1
1+x
=
-x
(1+x)2
<0(x≥1)

所以h(x)是减函数,所以h(x)≤h(1)=
1
2
-ln2<0(4>e⇒2>e
1
2
)

所以g(x)是减函数,gmax(x)=g(1),所以a>ln2
(3)要证
12+1+1
12+1
22+2+1
22+2
32+3+1
32+3
•…•
n2+n+1
n2+n
<e

只需证ln
12+1+1
12+1
+ln
22+2+1
22+2
+…+ln
n2+n+1
n2+2
<1

只需证ln(1+
1
12+1
)+ln(1+
1
22+2
)+…+ln(1+
1
n2+n
)<1

因为ln(1+
1
n2+n
)<
1
n2+n
=
1
n
-
1
n+1

所以ln(1+
1
12+1
)+ln(1+
1
22+2
)+…+ln(1+
1
n2+n
)<1-
1
n+1
<1

12+1+1
12+1
22+2+1
22+2
32+3+1
32+3
•…•
n2+n+1
n2+n
<e
核心考点
试题【已知f(x)=ln(x+1)-ax(a∈R)(1)当a=1时,求f(x)在定义域上的最大值;(2)已知y=f(x)在x∈[1,+∞)上恒有f(x)<0,求a的取】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)=
1
2
x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x,其中a∈R且a>1.
(I)求函数f(x)的导函数f′(x)的最小值;
(II)当a=3时,求函数h(x0的单调区间及极值;
(III)若对任意的x1,x2∈(0,+∞),x1≠x2,函数h(x)满足
h(x1)-h(x2)
x1-x2
>-1
,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
已知f(x)=ax-lnx>0对一切x>0恒成立,则实数a的取值范是______.
题型:解答题难度:一般| 查看答案
设函数f(x)=(1+x)2-ln(1+x)2+2.
(1)求函数f(x)的单调增区间;
(2)若不等式f(x)>m在x∈[
1
e
-1,e-1]
恒成立,求实数m的取值范围.
(3)若对任意的a∈(1,2),总存在x0∈[1,2],使不等式f(x0)>a+
9
4a
+m
成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
设函数f(x)=(x+1)ln(x+1).若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
对任意实数x,|x-1|-|x+3|<a恒成立,则a的取值范围是______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.