当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 若函数f(x)=4×9-|x-2|-2(P-2)×3-|x-2|-2P2-P+1在区间[2,+∞)内至少存在一个实数c使f(c)>0,则实数P的取值范围是___...
题目
题型:填空题难度:一般来源:不详
若函数f(x)=4×9-|x-2|-2(P-2)×3-|x-2|-2P2-P+1在区间[2,+∞)内至少存在一个实数c使f(c)>0,则实数P的取值范围是______.
答案
设t=3-|x-2|因为x∈[2,=∞)所以t∈(0,1]
所以g(t)=4t2-2(p-2)t-2p2-p+1,t∈(0,1]
所以原题等价为:在区间(0,1]内至少存在一个实数c使g(c)>0
∵g(t)图象开口向上
∴只要g(1)或者g(0)大于0即可
所以





g(1)=4-2(p-2)-2p2-p+1>0
g(0)=-2p2-p+1>0

解得-3<x<
3
2

所以实数P的取值范围是(-3,3/2).
故答案为:(-3,3/2).
核心考点
试题【若函数f(x)=4×9-|x-2|-2(P-2)×3-|x-2|-2P2-P+1在区间[2,+∞)内至少存在一个实数c使f(c)>0,则实数P的取值范围是___】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知:f(x)=-sin2x+sinx+a
(Ⅰ)当f(x)=0有实数解时,求实数a的取值范围;
(Ⅱ)若x∈R恒有1≤f(x)≤
17
4
成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
定义在(-1,1)上的函数f(x),对任意的x,y∈(-1,1)都有:f(x)+f(y)=f(
x+y
1+xy
)
;且当x∈(-∞,0)时,f(x)>0,回答下列问题:
(1)判断函数f(x)在(-1,1)的奇偶性,并说明理由;
(2)判断函数f(x)在(-1,1)的单调性,并说明理由;
(3)若f(
1
5
)=
1
2
,试求f(
1
2
)-f(
1
11
)-f(
1
19
)
的值.
题型:解答题难度:一般| 查看答案
若函数f(x)=
1
3x+1
+a
是奇函数,则a=______.
题型:填空题难度:一般| 查看答案
已知函数f(x)是R上的偶函数,它在[0,+∞)上是减函数,若f(lnx)>f(1),则x的取值范围是(  )
A.(e-1,1)B.(0,e-1)∪(1,+∞)C.(e-1,e)D.(0,1)∪(e,+∞)
题型:单选题难度:一般| 查看答案
证明函数:f(x)=


4-x2
|x+2|-2
的奇偶性.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.