当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数y=f(x)是定义在R上的奇函数,对R上任意x满足f(x+2)=f(x)+f(2),且f(1)=2,则f(2012)=(  )A.2010B.2012C...
题目
题型:单选题难度:简单来源:不详
已知函数y=f(x)是定义在R上的奇函数,对R上任意x满足f(x+2)=f(x)+f(2),且f(1)=2,则f(2012)=(  )
A.2010B.2012C.4020D.4024
答案
因为f(x+2)=f(x)+f(2),且函数y=f(x)是定义在R上的奇函数,
所以令x=-1,得f(-1+2)=f(-1)+f(2),即f(1)=-f(1)+f(2),
所以f(2)=2f(1)=4,即f(x+2)=f(x)+4,所以f(x+2)-f(x)=4.
(方法1构造数列)
所以{f(x+2)}可以看做是以f(0)为首项,d=4为公差的等差数列.
因为y=f(x)是定义在R上的奇函数,所以f(0)=0.
所以f(2012)为数列中的第1007项,所以f(2012)=f(0)+×4=1006×4=4024.
(方法2累加法)
由f(x+2)-f(x)=4,可得
f(2)-f(0)=4;
f(4)-f(2)=4;

f(2012)-f(2010)=4;
等式两边同时相加,得f(2012)-f(0)=1006×4=4024,
因为y=f(x)是定义在R上的奇函数,所以f(0)=0.
所以f(2012)═4024.
故选D.
核心考点
试题【已知函数y=f(x)是定义在R上的奇函数,对R上任意x满足f(x+2)=f(x)+f(2),且f(1)=2,则f(2012)=(  )A.2010B.2012C】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)=ax+x2,g(x)=xlna.a>1.
(I)求证函数F(x)=f(x)-g(x)在(0,+∞)上单调递增;
(II)若函数y=|F(x)-b+
1
b
|-3
有四个零点,求b的取值范围;
(III)若对于任意的x1,x2∈[-1,1]时,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范围.
题型:解答题难度:一般| 查看答案
已知:函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),f(2)=2,则f(2006)的值为______.
题型:填空题难度:简单| 查看答案
设α∈{-2,-1,1,2},则使函数y=xα为偶函数的所有α的和为 ______.
题型:填空题难度:一般| 查看答案
已知a∈R,函数f(x)=x2|x-a|.
(Ⅰ) 当a=1时,求使f(x)=x成立的x的集合;
(Ⅱ) 判断函数y=f(x)的奇偶性;
(Ⅲ)当a>2时,求函数y=f(x)在区间[1,2]上的最小值.
题型:解答题难度:一般| 查看答案
已知函数f(x)=
|x-2|-a


4-x2
为奇函数,则f(
a
2
)=(  )
A.2B.-2C.


3
2
D.-


3
3
题型:单选题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.