当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > M是具有以下性质的函数f(x)的全体:对于任意s,t>0,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t).(I)试判断函数f1(x)=log...
题目
题型:解答题难度:一般来源:昌平区一模
M是具有以下性质的函数f(x)的全体:对于任意s,t>0,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t).
(I)试判断函数f1(x)=log2(x+1),f2(x)=2x-1是否属于M?
(II)证明:对于任意的x>0,x+m>0(m∈R且m≠0)都有m[f(x+m)-f(x)]>0;
(III)证明:对于任意给定的正数s>1,存在正数t,当0<x≤t时,f(x)<s.
答案
(Ⅰ)由题意可知,f1(s)>0,f1(t)>0,f2(s)>0,f2(t)>0,
若log2(s+1)+log2(t+1)<log2(s+t+1)成立
则(s+1)(t+1)<s+t+1即st<0
与已知任意s,t>0即st>0相矛盾,故f1(x)∉M;    …(2分)
若2s+2t-2<2s+t-1成立 则2s+2t-2s+t-1<0
即(2s-1)(1-2t)<0
∵s,t>0
∴2s>1,1-2t<0即(2s-1)(1-2t)<0成立  …(4分)
故f2(x)∈M.
综上,f1(x)∉M,f2(x)∈M.…(5分)
(II)证明:当m>0时,f(x+m)>f(x)+f(m)>f(x)
∴f(x+m)-f(x)>0,
当m<0时,f(x)=f(x+m-m)>f(x+m)+f(-m)>f(x+m)
∴f(x+m)-f(x)<0
故m[f(x+m)-f(x)]>0.…(9分)
(III) 据(II)f(x)在(0.+∞)上为增函数,且必有f(2x)>2f(x)(*)
①若f(1)<s,令t=1,则0<x≤t时 f(x)<s;
②若f(1)>s,则存在k∈N*,使f(1)<2k=
1
t

由(*)式可得f(
1
2k
)<
1
2
f(
1
2k-1
)<…<
1
2k
f(1)<1<s,
即当0<x≤t时,f(x)<s
综①、②命题得证.                                                …(13分)
核心考点
试题【M是具有以下性质的函数f(x)的全体:对于任意s,t>0,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t).(I)试判断函数f1(x)=log】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知向量


a
=(x2,x+1),


b
=(1-x,t),若函数f(x)=


a


b
在区间(-1,1)上是增函数,求t的取值范围.
题型:解答题难度:一般| 查看答案
设a≥0,函数f(x)=[x2+(a-3)x-2a+3]exg(x)=2-a-x-
4
x+1

( I)当a≥1时,求f(x)的最小值;
( II)假设存在x1,x2∈(0,+∞),使得|f(x1)-g(x2)|<1成立,求a的取值范围.
题型:解答题难度:一般| 查看答案
已知f(x)是定义在R上的偶函数,当x>0时,
xf′(x)-f(x)
x2
>0
,且f(-2)=0,则不等式
f(x)
x
>0
的解集是(  )
A.(-2,0)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(2,+∞)D.(-∞,-2)∪(0,2)
题型:单选题难度:简单| 查看答案
下列函数为偶函数的是(  )
A.y=sinxB.y=x3C.y=exD.y=ln


x2+1
题型:单选题难度:一般| 查看答案
定义:对函数y=f(x),对给定的正整数k,若在其定义域内存在实数x0,使得f(x0+k)=f(x0)+f(k),则称函数f(x)为“k性质函数”.
(1)若函数f(x)=2x为“1性质函数”,求x0
(2)判断函数f(x)=
1
x
是否为“k性质函数”?说明理由;
(3)若函数f(x)=lg
a
x2+1
为“2性质函数”,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.