当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 函数f(x)的定义域为D={x|x≠0,x∈R},且满足对于任意的x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f...
题目
题型:解答题难度:一般来源:不详
函数f(x)的定义域为D={x|x≠0,x∈R},且满足对于任意的x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明你的结论;
(3)当f(4)=1,f(x)在(0,+∞)上是增函数时,若f(x-1)<2,求x的取值范围.
答案
(1)取x2=1,得f(x1×1)=f(x1)+f(1),即f(x1)=f(x1)+f(1),解之得f(1)=0;
(2)令x1=x2=-1,得f[-1×(-1)]=f(-1)+f(-1).解之得f(-1)=0
再令x1=-1,x2=x,得f(-x)=f(-1)+f(x)=f(x),
∴f(x)在D上为偶函数…(8分)
(3)由f(4×4)=f(4)+f(4)且f(4)=1,得f(16)=2…(9分)
∵f(x)在D上为偶函数,
∴不等式f(x-1)<2等价于f(|x-1|)<2…(10分)
∵f(x)在(0,+∞)上是增函数,由函数的定义域知|x-1|>0
∴0<|x-1|<16,解之得-15<x<17且x≠1,
即原不等式的解集为(-15,1]∪[1,17)…(12分)
核心考点
试题【函数f(x)的定义域为D={x|x≠0,x∈R},且满足对于任意的x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
对定义在实数集上的函数f(x),若存在实数x0,使得f(x0)=x0,那么称x0为函数f(x)的一个不动点.
(1)已知函数f(x)=ax2+bx-b(a≠0)有不动点1与-3,求a、b;
(2)若对于任意实数b,函数f(x)=ax2+bx-b (a≠0)总有两个相异的不动点,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
正数x、y满足
2
x
+
1
y
=1
,若x+2y>m2+2m恒成立,则实数m的取值范围是(  )
A.m≤-2或m≥4B.m≤-4或m≥2C.-2<m<4D.-4<m<2
题型:单选题难度:简单| 查看答案
已知定义在R上的函数f(x)是奇函数,且满足f(x+2)+2f(-x)=0;给出下列结论:①f(2)=0②f(x+2)=2f(x)③f(x+4)=4f(x)④f(x+6)=6f(x)其中正确的结论的个数是(  )
A.4B.3C.2D.1
题型:单选题难度:简单| 查看答案
已知函数f(x)=(m+
1
m
)lnx+
1
x
-x
,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性;
(3)当m∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得曲线y=f(x)在点P、Q处的切线互相平行,求x1+x2的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)为偶函数,g(x)为奇函数,且f(x)+g(x)=ex+x2
(I)求f(x)和g(x)的解析式;
(II)若h(x)=f(x)-
1
2ex
-x2-
1
2
x,求当x为何值时,h(x)取到最值,最值是多少?
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.