当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知数列an满足a1=1,an+1=an+n(n∈N*),数列bn满足b1=1,(n+2)bn+1=nbn(n∈N*),数列cn满足c1=1,c11+c222+...
题目
题型:解答题难度:一般来源:不详
已知数列an满足a1=1,an+1=an+n(n∈N*),数列bn满足b1=1,(n+2)bn+1=nbn(n∈N*),数列cn满足c1=1,
c1
1
+
c2
22
+…+
cn
n2
=
cn+1
n+1
(n∈N*
(1)求数列an、bn的通项公式;
(2)求数列cn的通项公式;
(3)是否存在正整数k使得k(an+
7
2
)-
3
bn+1
cn+6n+15
对一切n∈N*恒成立,若存在求k的最小值;若不存在请说明理由.
答案
(1)∵a1=1,an+1=an+n(n∈N*
∴n≥2,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(n-1)+(n-2)+…+1+1=
n(n-1)
2
+1
=
1
2
n2-
1
2
n+1

an=
1
2
n2-
1
2
n+1
(n∈N*),(n+2)bn+1=nbn(n∈N*
bn+1
bn
=
n
n+2

n≥2,bn=
bn
bn-1
bn-1
bn-2
b2
b1
b1=
n-1
n+1
n-2
n
1
3
•1
=
2
n(n+1)

bn=
2
n(n+1)
(n∈N*

(2)c1=1,
c1
1
+
c2
22
+…+
cn
n2
=
cn+1
n+1

c1
1
+
c2
22
+…+
cn-1
(n-1)2
=
cn
n
(n≥2)(n∈N*
两式相减得:
cn
n2
=
cn+1
n+1
-
cn
n

cn+1
cn
=
(n+1)2
n2
n=1,
c1
1
=
c2
2
得出c2=2,n≥2
cn=
cn
cn-1
cn-1
cn-2
c3
c2
c2=
n2
(n-1)2
(n-1)2
(n-2)2
32
22
•2
=
n2
2

cn=





1,n=1
n2
2
,n≥2,n∈N*

(3)当n=1时,k(a1+
7
2
)-3•
1
b2
c1+6+15

k>
62
9
且k∈N*k≥7且k∈N*
当n≥2时,k(an+
7
2
)-
3
bn+1
cn+6n+15
,即k(
n2
2
-
n
2
+
9
2
)-
3
2
(n+2)(n+1)>
n2
2
+6n+15

k(n2-n+9)>4n2+21n+36
∵n2-n+9>0恒成立,
k>
4n2+21n+36
n2-n+9

事实上:
4n2+21n+36
n2-n+9
=4+
25
n+
9
n
-1
n+
9
n
≥6
(n=3取等号)
(
4n2+21n+36
n2-n+9
)max
=9∴k>9且k∈N*
综上:k≥10,k∈N*故k的最小值为10.
核心考点
试题【已知数列an满足a1=1,an+1=an+n(n∈N*),数列bn满足b1=1,(n+2)bn+1=nbn(n∈N*),数列cn满足c1=1,c11+c222+】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知f(x)为偶函数,它在零到正无穷上是增函数,求f(2m-3)<f(8)的m范围.
题型:解答题难度:一般| 查看答案
定义在[-4,4]上的偶函数f(x)在区间[0,4]上单调递减,若f(1-m)<f(m),则实数m的取值范围是______.
题型:填空题难度:一般| 查看答案
下列命题:①若区间D内任意实数x都有f(x+1)>f(x),则y=f(x)在D上是增函数;②y=-
1
x
在定义域内是增函数;③函数f(x)=


1-x2
|x+1|-1
图象关于原点对称;④如果关于实数x的方程ax2+
1
x
=3x
的所有解中,正数解仅有一个,那么实数a的取值范围是a≤0;  其中正确的序号是______.
题型:填空题难度:一般| 查看答案
下列函数为偶函数的是(  )
A.f(x)=-3x+2B.f(x)=log2xC.f(x)=x3D.f(x)=|x|
题型:单选题难度:简单| 查看答案
(1)已知函数f(x)是R上的奇函数,且当x>0时,f(x)=x2-2x-3,求f(x)的解析式.
(2)已知奇函数f(x)的定义域为[-3,3],且在区间[-3,0]内递增,求满足f(2m-1)+f(m2-2)<0的实数m的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.