当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知定义在R上的单调递增函数满足,且。(Ⅰ)判断函数的奇偶性并证明之;(Ⅱ)解关于的不等式:;(Ⅲ)设集合,.,若集合有且仅有一个元素,求证: 。 ...
题目
题型:解答题难度:一般来源:不详
已知定义在R上的单调递增函数满足,且
(Ⅰ)判断函数的奇偶性并证明之;
(Ⅱ)解关于的不等式:
(Ⅲ)设集合,.,若集合有且仅有一个元素,求证:
答案
(Ⅰ)函数为R上的奇函数,(Ⅱ),(Ⅲ)见解析
解析

试题分析:(Ⅰ)抽象函数奇偶性的证明,先令,再令可求得出函数为奇函数,(Ⅱ)由(Ⅰ)知上为奇函数,则利用单调性及与-1的关系可解得; (Ⅲ)先对进行化简,再利用两方程有唯一解求证.
试题解析:(Ⅰ)令,
,,
函数为R上的奇函数.                        (4分)
(Ⅱ)由(Ⅰ)知
又函数是单调递增函数,
                   (8分)
(Ⅲ)


,又有且仅有一个元素,即方程组有唯一解,
仅有一个实根, ,即 (13分)
核心考点
试题【已知定义在R上的单调递增函数满足,且。(Ⅰ)判断函数的奇偶性并证明之;(Ⅱ)解关于的不等式:;(Ⅲ)设集合,.,若集合有且仅有一个元素,求证: 。 】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知偶函数满足:当时,,当时,
(Ⅰ)求表达式;
(Ⅱ)若直线与函数的图像恰有两个公共点,求实数的取值范围;
(Ⅲ)试讨论当实数满足什么条件时,直线的图像恰有个公共点,且这个公共点均匀分布在直线上.(不要求过程)
题型:解答题难度:一般| 查看答案
下列命题是真命题的序号为:             
①定义域为R的函数,对都有,则为偶函数
②定义在R上的函数,若对,都有,则函数的图像关于中心对称
③函数的定义域为R,若都是奇函数,则是奇函数
③函数的图形一定是对称中心在图像上的中心对称图形。
⑤若函数有两不同极值点,若,且,则关于的方程的不同实根个数必有三个.
题型:填空题难度:一般| 查看答案
已知定义在R上的可导函数的导函数为,满足,且 为偶函数,,则不等式的解集为 (      )
A.(B.(C.(D.(

题型:单选题难度:一般| 查看答案
设定义在上的奇函数,满足对任意都有,且时,,则的值等于.
题型:填空题难度:一般| 查看答案
能够把圆:的周长和面积同时分为相等的两部分的函数称为圆的“和谐函数”,下列函数不是圆的“和谐函数”的是(  )
A.B.
C.D.

题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.