当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 函数y=log12(2x-x2)的单调递增区间为 ______....
题目
题型:填空题难度:一般来源:不详
函数y=log
1
2
(2x-x2)
的单调递增区间为 ______.
答案
由题设令2x-x2>0,解得0<x<2
 令t=2x-x2,其图象开口向下,对称轴为x=1,
 故t=2x-x2在(0,1)上是增函数,在[1,2)上是减函数
  由于外层函数是减函数,由复合函数的单调性判断规则知
  函数y=log
1
2
(2x-x2)
的单调递增区间为[1,2)
 故应填[1,2).
核心考点
试题【函数y=log12(2x-x2)的单调递增区间为 ______.】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
生产一定数量商品时的全部支出称为生产成本,可表示为商品数量的函数,现知道一企业生产某种商品的数量为x件时,成本函数是
C(x)=20+2x+0.5x2(万元),若每售出一件这种商品的收入是20万元,那么生产这种商品多少件时,该企业获得最大利润,最大利润是多少?
题型:解答题难度:一般| 查看答案
设f(x)(x∈R)为偶函数,且f(x)在[0,+∞)上是增函数,则f(-2)、f(-π)、f(3)的大小顺序是(  )
A.f(-π)<f(-2)<f(3)B.f(-π)>f(-2)>f(3)C.f(-π)<f(3)<f(-2)D.f(-π)>f(3)>f(-2)
题型:单选题难度:简单| 查看答案
f(x)=log2(


x2+1
-x)+x5
,若f(m)=n,则f(-m)=(  )
A.m+nB.m-nC.-mD.-n
题型:单选题难度:一般| 查看答案
已知函数y=f(x)是R上的偶函数,且在(-∞,0]上是减函数,若f(a)>f(2),则实数a的取值范围是(  )
A.a≤2B.a<-2或a>2C.a≥-2D.-2≤a≤2
题型:单选题难度:一般| 查看答案
定义一种新的运算“*”对任意正整数n满足下列两个条件:(1)1*1=1(2)(n+1)*1=2+(n*1),则2006*1=(  )
A.2007B.4011C.4012D.2008
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.