当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)过点(-1,3)且g(x)=f(x-1),则f(2007)+f(2008)=______....
题目
题型:填空题难度:一般来源:不详
已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)过点(-1,3)且g(x)=f(x-1),则f(2007)+f(2008)=______.
答案
∵f(x)为R上的偶函数,∴f(-x)=f(x)
∵g(x)为R上的奇函数,∴g(-x)=-g(x)
∵g(x)=f(x-1)
⇒g(-x)=f(-x-1)
⇒-g(x)=f(-x-1)
⇒g(x)=-f(-x-1)
∴f(x-1)=-f(-x-1)
令-x-1=t,则:x=-t-1
∴f(-t-2)=-f(t)…(1)
再令-t-2=u,则-u=t+2
而偶函数f(x)满足f(u)=f(-u)
即,f(-t-2)=f(t+2)…(2)
由(1)(2)得到:f(-t-2)=-f(t)=f(t+2)
∴f(t+2)=-f(t)…(3)
∴f[(t+2)+2]=-f(t+2)=-[-f(t)]=f(t)
即,f(t+4)=f(t)
∴偶函数f(x)也是以4为周期的周期函数 
f(2007)=f(3+4×501)=f(3)
f(2008)=f(0+4×502)=f(0)
由(3)得到,f(3)=-f(1)
∴f(2007)+f(2008)=f(3)+f(0)=-f(1)+f(0)
而,g(x)=f(x-1)
令x=0,那么:g(0)=f(0-1)=f(-1)=f(1)
所以,-f(1)=0
令x=1,那么:g(1)=f(1-1)=f(0)
所以,f(2007)+f(2008)=-g(0)+g(1)
因为在R上的奇函数g(x)必定满足:g(-x)=-g(x)
即,g(x)+g(-x)=0
所以,g(0)+g(-0)=0
则,g(0)=0
已知g(x)过点(-1,3),即:g(-1)=3
所以:g(1)=-g(-1)=-3
综上:f(2007)+f(2008)=-3
故答案为-3.
核心考点
试题【已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)过点(-1,3)且g(x)=f(x-1),则f(2007)+f(2008)=______.】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为
1
2
,则a=______
题型:填空题难度:一般| 查看答案
奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)=______.
题型:填空题难度:简单| 查看答案
若函数f(x+2)=





sin(
π
2
+x),x≥0lg(-x-4),x<0
,则f(
π
3
+2)•f(-102)=______.
题型:填空题难度:一般| 查看答案
已知函数f(x)是定义在(0,+∞)上的单调递增函数,且满足f(3x-2)<f(1),则实数x的取值范围是______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=





ax(x<0)
(a-3)x+4a(x≥0)
,满足对任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
<0
成立,则a的取值范围是______.
题型:填空题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.