当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 对于函数①f(x)=|x+2|,②f(x)=|x-2|,③f(x)=cos(x-2),判断如下两个命题的真假:命题甲:f(x+2)是偶函数;命题乙:f(x)在(...
题目
题型:填空题难度:简单来源:不详
对于函数①f(x)=|x+2|,②f(x)=|x-2|,③f(x)=cos(x-2),判断如下两个命题的真假:命题甲:f(x+2)是偶函数;命题乙:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数;能使命题甲、乙均为真的所有函数的序号是 ______.
答案
①函数f(x)=|x+2|,则有f(x+2)=|x+4|,显然这不是偶函数,因此①中的函数不符合要求;
②函数f(x)=|x-2|,则有f(x+2)=|x|,f(x+2)是偶函数,又由函数f(x)的图象可知f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数,所以②符合要求;
③中函数f(x)=cos(x-2),则有f(x+2)=cosx,是偶函数,但是它在(-∞,2)上没有单调性;因此答案应为②.
故答案为②.
核心考点
试题【对于函数①f(x)=|x+2|,②f(x)=|x-2|,③f(x)=cos(x-2),判断如下两个命题的真假:命题甲:f(x+2)是偶函数;命题乙:f(x)在(】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
设函数f(x)=
ax2+bx+1
x+c
(a>0)
为奇函数,且|f(x)|min=2


2
,数列{an}与{bn}满足如下关系:a1=2,an+1=
f(an)-an
2
bn=
an-1
an+1
.

(1)求f(x)的解析式;
(2)求数列{bn}的通项公式bn
(3)记Sn为数列{an}的前n项和,求证:对任意的n∈N*Sn<n+
3
2
.
题型:解答题难度:一般| 查看答案
已知函数y=f(x)在定义域[-1,1]上是奇函数,又是减函数.
(1)证明:对任意的x1,x2∈[-1,1],有[f(x1)+f(x2)](x1+x2)≤0
(2)解不等式f(1-a)+f(1-a2)<0.
题型:解答题难度:一般| 查看答案
定义在R上的偶函数y=f(x)满足:对任意x∈R都有f(x+6)=f(x)+f(3)成立,则f(9)=______.
题型:填空题难度:简单| 查看答案
已知曲线y=f(x)在x=2处的切线方程为y=-x+8,则f(2)+f"(2)=______.
题型:填空题难度:一般| 查看答案
函数y=
1
x2+2x+4
的单调增区间为______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.