当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)=2x+2-x.(1)证明f(x)是偶函数;(2)判断f(x)在(0,+∞)上的单调性并加以证明....
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=2x+2-x.(1)证明f(x)是偶函数;(2)判断f(x)在(0,+∞)上的单调性并加以证明.
答案
(1)证明:f(x)的定义域为R,…(1分)
且对于任意x∈R,f(-x)=2-x+2x=f(x),所以f(x)是偶函数.…(4分)
(2)f(x)是(0,+∞)上的增函数.…(5分)
证明如下:设x1,x2是(0,+∞)上的两个任意实数,且x1<x2,则△x=x1-x2<0,△y=f(x1)-f(x2)=(2x1+
1
2x1
)-(2x2+
1
2x2
)=2x1-2x2+
1
2x1
-
1
2x2
=2x1-2x2+
2x2-2x1
2x1+x2
=(2x1-2x2)(1-
1
2x1+x2
)

因为0<x1<x2,所以 2x12x22x1+x2>1,所以2x1-2x2<01-
1
2x1+x2
>0
,从而△y<0,
所以f(x)是(0,+∞)上的增函数.…(10分)
核心考点
试题【已知函数f(x)=2x+2-x.(1)证明f(x)是偶函数;(2)判断f(x)在(0,+∞)上的单调性并加以证明.】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=





(
1
2
)x   x≥2
f(x+1)   x<2
,则函数f(log23)的值为______.
题型:填空题难度:一般| 查看答案
设函数f(x),g(x)的定义域都是D,又h(x)=f(x)+g(x).若f(x),g(x)的最大值分别是M、N,最小值分别是m、n,给出以下四个结论:
(1)h(x)的最大值是M+N;
(2)h(x)的最小值是m+n;
(3)h(x)的值域是{y|m+n≤y≤M+N};
(4)h(x)的值域是{y|m+n≤y≤M+N}的一个子集.
则正确结论的个数是(  )
A.0个B.1个C.2个D.3个
题型:单选题难度:简单| 查看答案
定义在R上的函数f(x)满足f(x+y)=f(x)•f(y)(x,y∈R),且当x>0时,f(x)>1;f(2)=4.
(Ⅰ)求f(1),f(-1)的值;    
(Ⅱ)证明:f(x)是单调递增函数;
(III) 若f(x2-ax+a)≥


2
对任意x∈(1,+∞)恒成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
已知不等式


2
(2a+3)cos(θ-
π
4
)+
6
sinθ+cosθ
-2sin2θ<3a+6对于θ∈[0,
π
2
]
恒成立,求a的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=
2-x
x+1

(1)用单调性的定义证明:函数f(x)在(-1,+∞)上为减函数;
(2)若关于x的方程f(x)-3x-m=0在x∈[1,+∞)上有解,求实数m的最大值;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.