当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知f(x)是定义在(0,+∞)上的单调递增函数,且满足f(3x-2)<f(1),则实数x的取值范围是(  )A.(-∞,1)B.(23,1)C.(23,+∞)...
题目
题型:单选题难度:一般来源:肇庆二模
已知f(x)是定义在(0,+∞)上的单调递增函数,且满足f(3x-2)<f(1),则实数x的取值范围是(  )
A.(-∞,1)B.(
2
3
,1)
C.(
2
3
,+∞)
D.(1,+∞)
答案
∵f(x)是定义在(0,+∞)上的单调递增函数,且满足f(3x-2)<f(1),





3x-2>0
3x-2<1





x>
2
3
x<1
⇒x∈(
2
3
,1)

∴实数x的取值范围是(
2
3
,1)

故选B.
核心考点
试题【已知f(x)是定义在(0,+∞)上的单调递增函数,且满足f(3x-2)<f(1),则实数x的取值范围是(  )A.(-∞,1)B.(23,1)C.(23,+∞)】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
函数f(x)=x-alnx+
a+1
x
(a>0)
(1)求f(x)的单调区间;
(2)求使函数f(x)有零点的最小正整数a的值;
(3)证明:ln(n!)-ln2>
6n3-n2-19n-6
12n(n+1)
(n∈N*,n≥3).
题型:解答题难度:一般| 查看答案
若函数f(x)=
|x-2|+a


4-x2
的图象关于原点对称,则f(
a
2
)=(  )
A.


3
3
B.-


3
3
C.1D.一1
题型:单选题难度:一般| 查看答案
对于函数①f(x)=4x+
1
x
-5
,②f(x)=|log2x|-(
1
2
)x
,③f(x)=cos(x+2)-cosx,
判断如下两个命题的真假:
命题甲:f(x)在区间(1,2)上是增函数;
命题乙:f(x)在区间(0,+∞)上恰有两个零点x1,x2,且x1x2<1.
能使命题甲、乙均为真的函数的序号是(  )
A.①B.②C.①③D.①②
题型:单选题难度:一般| 查看答案
已知函数f(x)=





log2(1-x),    x≤0
f(x-1)+1,        x>0
,则f(2012)=(  )
A.2008B.2010C.2012D.2011
题型:单选题难度:简单| 查看答案
已知函数f(x)是定义在R上的奇函数,且当x<0时,f(x)=-x2-2x-2.
(1)求出函数f(x)(x∈R)的解析式;
(2)写出函数f(x)(x∈R)的增区间;
(3)若函数g(x)=f(x)-2ax(x∈[1,2]),求函数的g(x)最小值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.