当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知定义在R上的函数f(x)的图象关于原点对称,其最小正周期为4,且x∈(0,2)时,f(x)=log2(1+3x),则f(2 015)=______....
题目
题型:填空题难度:一般来源:不详
已知定义在R上的函数f(x)的图象关于原点对称,其最小正周期为4,且x∈(0,2)时,f(x)=log2(1+3x),则f(2 015)=______.
答案
-2
解析
由函数f(x)的最小正周期为4,所以f(2 015)=f(503×4+3)=f(3)=f(-1),又函数f(x)的图象关于原点对称,知f(-x)=-f(x),故f(2 015)=f(-1)=-f(1)=-log24=-2.
核心考点
试题【已知定义在R上的函数f(x)的图象关于原点对称,其最小正周期为4,且x∈(0,2)时,f(x)=log2(1+3x),则f(2 015)=______.】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
f(x)=x3+log2,则不等式f(m)+f(m2-2)≥0(m∈R)成立的充要条件是________.(注:填写m的取值范围)
题型:填空题难度:简单| 查看答案
对函数f(x)=xsin x,现有下列命题:①函数f(x)是偶函数;②函数f(x)的最小正周期是2π;③点(π,0)是函数f(x)的图象的一个对称中心;④函数f(x)在区间上单调递增,在区间上单调递减.其中是真命题的是________.(写出所有真命题的序号)
题型:填空题难度:一般| 查看答案
{an}为首项为正数的递增等差数列,其前n项和为Sn,则点(nSn)所在的抛物线可能为(  )

题型:单选题难度:一般| 查看答案
已知函数f(x)是R上的单调递增函数且为奇函数,数列{an}是等差数列,a3>0,则f(a1)+f(a3)+f(a5)的值(  )
A.恒为正数
B.恒为负数
C.恒为0
D.可以为正数也可以为负数

题型:单选题难度:一般| 查看答案
设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时t的取值范围是(  )
A.-2≤t≤2B.-≤t≤
C.t≤-2或t=0或t≥2D.t≤-或t=0或t≥

题型:单选题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.