当前位置:高中试题 > 数学试题 > 求函数解析式 > 已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.(1)求f(x)的解...
题目
题型:解答题难度:一般来源:不详
已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.
答案
(1)∵函数F(x)=f(x)-3x2是奇函数,
∴F(-x)=-F(x),化简计算得b=3.
∵函数f(x)在x=-1处取极值,∴f′(x)=0.
f(x)=-2x3+3x2+cx,f′(x)=-6x2+6x+c
∴f′(-1)=-6-6+c=0,c=12.
∴f(x)=-2x3+3x2+12x,
(2)f′(x)=-6x2+6x+12=-6(x2-x-2).
令f′(x)=0,得x1=-1,x2=2,

∴函数f(x)在[-3,-1]和[2,3]上是减函数,
函数f(x)在[-1,2]上是增函数.
核心考点
试题【已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.(1)求f(x)的解】;主要考察你对求函数解析式等知识点的理解。[详细]
举一反三
水以20m3/分的速度流入一圆锥形容器,设容器深30m,上底直径12,当水深10m时,水面上升的速度为______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=
bx+1
(ax+1)2
(x≠-
1
a
,a>0)
,且f(1)=log162,f(-2)=1.
(1)求函数f(x)的表达式;
(2)若数列xn的项满足xn=[1-f(1)]•[1-f(2)]•…•[1-f(n)],试求x1,x2,x3,x4
(3)猜想数列xn的通项,并用数学归纳法证明.
题型:解答题难度:一般| 查看答案
细杆AB长为20cm,AM段的质量与A到M的距离平方成正比,当AM=2cm时,AM段质量为8g,那么当AM=x时,M处的细杆线密度ρ(x)为(  )
A.5xB.4xC.3xD.2x
题型:单选题难度:简单| 查看答案
已知函数f(x)为一次函数,其图象经过点(3,4),且
10
f(x)dx=1,则函数f(x)的解析式为______.
题型:填空题难度:一般| 查看答案
已知f(x)是一次函数,满足3f(x+1)=6x+4,则f(x)=______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.