当前位置:高中试题 > 数学试题 > 分段函数 > 设f(x)为定义在R上的偶函数,当0≤x≤2时,y=x;当x>2时,y=f(x)的图象是顶点为P(3,4)且过点A(2,2)的抛物线的一部分.(1)求函数f(x...
题目
题型:解答题难度:一般来源:同步题
设f(x)为定义在R上的偶函数,当0≤x≤2时,y=x;当x>2时,y=f(x)的图象是顶点为P(3,4)且过点A(2,2)的抛物线的一部分.
(1)求函数f(x)在(-∞,-2)上的解析式;
(2)在图中的直角坐标系中画出函数f(x)的图象;
(3)写出函数f(x)的值域和单调区间.
答案
解:(1)当x>2时,设f(x)=a(x-3)2+4,
∵f(x)的图象过点A(2,2),
∴f(2)=a(2-3)2+4=2,
∴a=-2,
∴f(x)=-2(x-3)2+4,
设x∈(-∞,-2),则-x>2,
∴f(-x)=-2(-x-3)2+4,
又因为f(x)在R上为偶函数,
∴f(-x)=f(x),
∴f(x)=-2(-x-3)2+4,
即f(x)=-2(x+3)2+4,x∈(-∞,-2).
(2)图象如下图所示,

(3)由图象观察知f(x)的值域为{y|y≤4},
单调增区间为(-∞,-3]和[0,3],单调减区间为[-3,0]和[3,+∞).
核心考点
试题【设f(x)为定义在R上的偶函数,当0≤x≤2时,y=x;当x>2时,y=f(x)的图象是顶点为P(3,4)且过点A(2,2)的抛物线的一部分.(1)求函数f(x】;主要考察你对分段函数等知识点的理解。[详细]
举一反三
化简,并画出简图.
题型:解答题难度:一般| 查看答案
已知min{a,b}表示a,b两数中的最小值,若函数f(x)=min{|x|,|x+t|}的图象关于直线x=对称,则t的值为[     ]
A.-2
B.2
C.-1
D.1
题型:单选题难度:一般| 查看答案
若定义运算a*b=,则函数f(x)=3x*3-x的值域是[     ]
A.(0,1]
B.[1,+∞)
C.(0,+∞)
D.(-∞,+∞)
题型:单选题难度:一般| 查看答案
设函数,若f(x0)>1,则x0的取值范围是

[     ]

A.(-1,1)
B.(-1,+∞)
C.(-∞,-2)∪(0,+∞)
D.(-∞,-1)∪(1,+∞)
题型:单选题难度:一般| 查看答案
给出函数f(x)=,则f(log23)=[     ]
A.
B.
C.
D.
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.