当前位置:高中试题 > 数学试题 > 分段函数 > 已知函数f(x)=|x-1|-|x+2|.(1)用分段函数的形式表示该函数;(2)在右边所给的坐标第中画出该函数的图象;(3)写出该函数的定义域、值域、奇偶性、...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=|x-1|-|x+2|.
(1)用分段函数的形式表示该函数;
(2)在右边所给的坐标第中画出该函数的图象;
(3)写出该函数的定义域、值域、奇偶性、单调区间(不要求证明).
答案
(1)f(x)=





3(x<-2)
-2x-1(-2≤x<1)
-3(x≥1)

(2)
(3)该函数的定义域为R.该函数的值域为[-3,3].
该函数是非奇非偶函数.该函数的单调区间为[-2,1].
核心考点
试题【已知函数f(x)=|x-1|-|x+2|.(1)用分段函数的形式表示该函数;(2)在右边所给的坐标第中画出该函数的图象;(3)写出该函数的定义域、值域、奇偶性、】;主要考察你对分段函数等知识点的理解。[详细]
举一反三
设函数f(x)对任意xy∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)>0,且f(1)=2
(1)求f(0),f(-1)的值
(2)求证:f(x)是奇函数
(3)试问在-2≤x≤4时,f(x)是否有最值;如果没有,说出理由.
题型:解答题难度:一般| 查看答案
定义在(0,+∞)上的增函数f(x)满足:对任意的x>0,y>0都有f(xy)=f(x)+f(y),
(1)求f(1)的值;
(2)请举出一个符合条件的函数f(x);
(3)若f(2)=1,解不等式f(x2-5)-f(x)<2.
题型:解答题难度:一般| 查看答案
设定义域为R+的函数f(x),对任意的正实数x,y,都有f(xy)=f(x)+f(y),且当x>1时有f(x)>0.
①求f(1)的值;
②判断f(x)在(0,+∞)上的单调性,并证明.
③若f(
1
a
)=-1,求满足不等式f(1-x-2x2)≤1的x的取值范围.
题型:解答题难度:一般| 查看答案
设函数f(x)定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,有f(x+y)=f(x)•f(y).
(1)证明:f(0)=1;
(2)证明:f(x)在R上是增函数;
(3)设集合A={(x,y)|f(x2)•f(y2)<f(1)},B={(x,y)|f(x+y+c)=1,c∈R},若A∩B=φ,求c的取值范围.
题型:解答题难度:一般| 查看答案
如果函数f(x)满足:对任意的实数x,y都有f(x+y)=f(x)•f(y)且f(1)=2,则
f(2)
f(1)
+
f(4)
f(2)
+
f(6)
f(3)
+
f(8)
f(4)
+…+
f(20)
f(10)
=______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.