当前位置:初中试题 > 数学试题 > 统计与概率 > 要使26+210+2x为完全平方数,那么非负整数x可以是 ______.(要求写出x的3个值)...
题目
题型:不详难度:来源:
要使26+210+2x为完全平方数,那么非负整数x可以是 ______.(要求写出x的3个值)
答案
∵26=(232,210=(252
∴(25+1)2=210+2•25+1=210+26+1,
∴要使26+210+2x为完全平方数,2x可以为1,
即2x=1=20,解得x=0;
又∵(25+232=210+2•28+26=210+26+29
∴要使26+210+2x为完全平方数,2x可以为29
即2x=29,解得x=9;
又∵(26+232=212+2•29+26=210+26+212
∴要使26+210+2x为完全平方数,2x可以为212
即2x=212,解得x=12;
故答案为:0,9,12.
核心考点
试题【要使26+210+2x为完全平方数,那么非负整数x可以是 ______.(要求写出x的3个值)】;主要考察你对统计与概率等知识点的理解。[详细]
举一反三
2615个位上的数字是(  )
A.2B.4C.6D.8
题型:贺州难度:| 查看答案
对任意实数x,(7x-1)10=a10x10+a9x9+a8x8+…+a3x3+a2x2+a1x+a0都成立,则式子a10+a8+a6+a4+a2的值的个位数字是______.
题型:不详难度:| 查看答案
如果一个数能表示成x2+2xy+2y2(x,y是整数),我们称这个数为“好数”.
(1)你认为“好数”的特征是什么?判断29是否为“好数”?
(2)写出1,2,3,…,9中的“好数”;
(3)如果m,n都是“好数”,那么mn是否为“好数”?为什么?
题型:不详难度:| 查看答案
m是一个完全平方数,那么和m相邻且比它小的完全平方数是(  )
A.m-1B.m2-1C.m-2


m
+1
D.以上都不对
题型:不详难度:| 查看答案
设自然数N是完全平方数,N至少是3位数,它的末2位数字不是00,且去掉此2位数字后,剩下的数还是完全平方数,则N的最大值是______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.