当前位置:初中试题 > 数学试题 > 图形的旋转 > (1)如图1,在正方形ABCD中,O为正方形的中心,∠MON绕着O点自由的转动,角的两边与正方形的边BC、CD交于E、F.若∠MON=90°,正方形的面积等于S...
题目
题型:不详难度:来源:
(1)如图1,在正方形ABCD中,O为正方形的中心,∠MON绕着O点自由的转动,角的两边与正方形的边BC、CD交于E、F.若∠MON=90°,正方形的面积等于S.求四边形OECF的面积.(用S表示)
下面给出一种求解的思路,你可以按这一思路求解,也可以选择另外的方法去求.
解:连接OB、OC.∵O为正方形的中心,∴∠BOC=
360
4
=90°,
∵∠MON=90°∴∠FOC+∠EOC=∠EOB+∠EOC=90°.∴∠FOC=∠EOB
(下面请你完成余下的解题过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),O是△ABC的中心,∠MON=120°,正三角形ABC的面积等于S.求四边形OECF的面积.(用S表示)
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X”,正n边形的面积等于S.请你作出猜想:当∠MON=______°时,四边形OECF的面积=______(用S表示,并直接写出答案,不需要证明).
答案
(1)∵O为正方形ABCD的中心,
∴∠OCF=∠OBE=45°,OB=OC,
∵∠FOC=∠EOB,∴△OBE≌△OCF,
∴S△FOC+S△OEC=S△EOB+S△OEC
即 S四边形OECF=S△BOC
∵S△BOC=
1
4
S,∴S四边形OECF=
1
4
S;

(2)∵O为正三角形ABC的中心,
∴∠OCF=∠OBE=30°,OB=OC,∠BOC=120°,
∴∠FOC+∠EOC=∠EOB+∠EOC,∴∠FOC=∠EOB,
∴△OBE≌△OCF,
∴S△FOC+S△OEC=S△EOB+S△OEC
即 S四边形OECF=S△BOC
S△BOC=
1
3
S,∴S四边形OECF=
1
3
S;

(3)
360
n
S
n
核心考点
试题【(1)如图1,在正方形ABCD中,O为正方形的中心,∠MON绕着O点自由的转动,角的两边与正方形的边BC、CD交于E、F.若∠MON=90°,正方形的面积等于S】;主要考察你对图形的旋转等知识点的理解。[详细]
举一反三
如图,平面直角坐标系中,∠ABO=90°,将直角△AOB绕O点顺时针旋转,使点B落在x轴上的点B1处,点A落在A1处,若B点的坐标为(
16
5
12
5
),则点A1的坐标是(  )
A.(3,-4)B.(4,-3)C.(5,-3)D.(3,-5)

题型:不详难度:| 查看答案
在图中利用网格线,分别作出△ABC关于直线l的轴对称图形和关于点O的中心对称图形.
题型:不详难度:| 查看答案
如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为(  )
A.30°B.45°C.90°D.135°

题型:不详难度:| 查看答案
如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,已知△ABC,
(1)△ABC与△A1B1C1关于原点O对称,写出△A1B1C1各顶点的坐标,画出△A1B1C1
(2)以O为旋转中心将△ABC顺时针旋转90°得△A2B2C2,画出△A2B2C2并写出△A2B2C2各顶点的坐标.
题型:不详难度:| 查看答案
四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)试判断△AEF的形状,并说明理由;
(2)填空:△ABF可以由△ADE绕旋转中心______点,按顺时针方向旋转______度得到;
(3)若BC=8,则四边形AECF的面积为______.(直接写结果)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.