当前位置:初中试题 > 数学试题 > 轴对称 > 如图,已知D为等边△ABC内一点,将△DBC绕点C旋转成△EAC.试判断△CDE的形状,并证明你的结论.     ...
题目
题型:不详难度:来源:
如图,已知D为等边△ABC内一点,将△DBC绕点C旋转成△EAC.试判断△CDE的形状,并证明你的结论.
    
答案
证明:△CDE为等边三角形,
∵△EAC是由△DBC绕点C旋转而成,
∴∠ACE=∠BCD,CD=CE,
∴∠DCE=∠BCA,
∵△ABC为等边三角形,
∴∠ACD=∠DCE=60°,
∵CE=CD,
∴∠CED=∠CDE=60°,
∴△CDE为等边三角形.
解析
本题主要考查等边三角形的判定和性质、三角形内角和定理,关键在于根据题意推出∠ACD=∠DCE=60°,CE=CD.
核心考点
试题【如图,已知D为等边△ABC内一点,将△DBC绕点C旋转成△EAC.试判断△CDE的形状,并证明你的结论.     】;主要考察你对轴对称等知识点的理解。[详细]
举一反三
下列图形中,既是轴对称图形又是中心对称图形的是                       ( ▲  )
题型:不详难度:| 查看答案
如图是一块长方形的场地,长,宽,从两处入口的中路宽都为,两小路汇合处路宽为,其余部分种植草坪,则草坪面积为(    )
A.5050m²B.5000m² C.4900m² D.4998m²

题型:不详难度:| 查看答案
如图,把矩形沿对折,若,则=       
题型:不详难度:| 查看答案
如图a是长方形纸带,∠DEF=22°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是                    
题型:不详难度:| 查看答案
小明在学习轴对称的时候,老师留了这样一道思考题:如图,已知在直线l的同侧有A、B两点,请你在直线l上确定一点P,使得PA+PB的值最小.小明通过独立思考,很快得出了解决这个问题的正确方法,他的作法是这样的:

①作点A关于直线l的对称点A′.
②连结A′B,交直线l于点P.
则点P为所求.

请你参考小明的作法解决下列问题:
(1)如图,在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使得△PDE的周长最小.

①在图1中作出点P.(三角板、刻度尺作图,保留作图
痕迹,不写作法)                  
②请直接写出△PDE周长的最小值        .
(2)如图在矩形ABCD中,AB=4,BC=6,G为边AD的中点,若E、F为边AB上的两个动点,点E在点F左侧,且EF=1,当四边形CGEF的周长最小时,请你在图2中确定点E、F的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并直接写出四边形CGEF周长的最小值     .

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.