当前位置:初中试题 > 数学试题 > 轴对称 > 如图(1),点A、B、C在同一直线上,且△ABE, △BCD都是等边三角形,连结AD,CE.(1)△BEC可由△ABD顺时针旋转得到吗?若是,请描述这一旋转变换...
题目
题型:不详难度:来源:
如图(1),点A、B、C在同一直线上,且△ABE, △BCD都是等边三角形,连结AD,CE.
(1)△BEC可由△ABD顺时针旋转得到吗?若是,请描述这一旋转变换过程;若不是,请说明理由;
(2)若△BCD绕点B顺时针旋转,使点A,B,C不在同一直线上(如图(2)),则在旋转过程中:
①线段AD与EC的长度相等吗?请说明理由.
②锐角的度数是否改变?若不变,请求出的度数;若改变,请说明理由.
(注:等边三角形的三条边都相等,三个角都是60°)
答案
(1)△BEC可以由△ABD绕点B顺时针旋转60°得到.  
(2) 说明△ABD≌△EBC  (SAS)得AD="EC"
②锐角的度数不改变。
∵△ABD≌△EBC
∴∠BCE=∠BDA
∴∠FCD + ∠FDC =∠FCD + ∠BDC +∠ADB=∠BCE + ∠FCD + ∠BDC=∠BCD + ∠BDC=60°+ 60°=120°
∴∠CFD=180°-(∠FCD + ∠FDC) = 180°-120°= 60°
解析
(1)根据等边三角形的性质得到BA=BE,BD=BC,∠ABE=∠CBD=60°,则∠ABD=∠EBC,根据旋转的定义得到△ABD绕点B顺时针旋转60°可得到△BEC;
(2)根据等边三角形的性质得到BA=BE,BD=BC,∠ABE=∠CBD=60°,则∠ABD=∠EBC,易证得△ABD≌△EBC,根据全等的旋转即可得到AD=EC;
(3)由△ABD≌△EBC得到∠BCE=∠BDA,则有∠FCD+∠FDC=∠FCD+∠BDC+∠ADB=∠BCE+∠FCD+∠BDC=∠BCD+∠BDC=60°+60°=120°,根据三角形内角和定理即可得到∠CFD的度数.
核心考点
试题【如图(1),点A、B、C在同一直线上,且△ABE, △BCD都是等边三角形,连结AD,CE.(1)△BEC可由△ABD顺时针旋转得到吗?若是,请描述这一旋转变换】;主要考察你对轴对称等知识点的理解。[详细]
举一反三
下列图形中是中心对称图形的是 
 
题型:不详难度:| 查看答案
如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.
求证:(1)△ADA′≌△CDE;
(2)直线CE是线段AA′的垂直平分线.
题型:不详难度:| 查看答案
正方形绕其中心旋转一定的角度与原图形重合,则这个角至少为   ▲  度 .
题型:不详难度:| 查看答案
下列几何图形中,对称性与其它图形不同的是【   】
题型:不详难度:| 查看答案
如图,已知Rt△ABC中,∠ABC=90°,∠BAC=30°, AC=4cm,将△ABC绕顶点C顺时针旋转至△A/B/C的位置,且A,C,B/三点在同一条直线上,则点A经过的路径的长度是  (   )
A.8cmB.cmC.cm D.cm

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.