当前位置:初中试题 > 数学试题 > 轴对称 > 如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM^直线a于点M,CN^直线a于点N,连接PM、PN;(1) 延长MP交C...
题目
题型:不详难度:来源:
如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM^直线a于点M,CN^直线a于点N,连接PM、PN;
(1) 延长MP交CN于点E(如图2)。j求证:△BPM≌△CPE;k求证:PM=PN;
(2) 若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变。此时
PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3) 若直线a绕点A旋转到与BC边平行的位置时,其它条件不变。请直接判断四边形MBCN
的形状及此时PM=PN还成立吗?不必说明理由。
答案
(1)见解析;(2)成立;(3)成立
解析

试题分析:(1)①根据平行线的性质证得∠MBP=∠ECP再根据BP=CP,∠BPM=∠CPE即可得到;
②由△BPM≌△CPE,得到PM=PE则PM=ME,而在Rt△MNE中,PN=ME,即可得到PM=PN.
(2)证明方法与②相同.
(3)四边形MBCN是矩形,则PM=PN成立.
(1)①如图2:

∵BM⊥直线a于点M,CN⊥直线a于点N,
∴∠BMA=∠CNM=90°,
∴BM∥CN,
∴∠MBP=∠ECP,
又∵P为BC边中点,
∴BP=CP,
又∵∠BPM=∠CPE,
∴△BPM≌△CPE,
②∵△BPM≌△CPE,
∴PM=PE
∴PM=ME,
∴在Rt△MNE中,PN=ME,
∴PM=PN.
(2)成立,如图3,延长MP与NC的延长线相交于点E,

∵BM⊥直线a于点M,CN⊥直线a于点N,
∴∠BMN=∠CNM=90°
∴∠BMN+∠CNM=180°,
∴BM∥CN
∴∠MBP=∠ECP,
又∵P为BC中点,
∴BP=CP,
又∵∠BPM=∠CPE,
∴△BPM≌△CPE,
∴PM=PE,
∴PM=ME,
则Rt△MNE中,PN=ME,
∴PM=PN.
(3)如图4:

四边形M′BCN′是矩形,
根据矩形的性质和P为BC边中点,得到△M′BP≌△N′CP,
得PM′=PN′成立.即“四边形MBCN是矩形,则PM=PN成立”.
点评:解答本题的关键是熟练掌握旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.
核心考点
试题【如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM^直线a于点M,CN^直线a于点N,连接PM、PN;(1) 延长MP交C】;主要考察你对轴对称等知识点的理解。[详细]
举一反三
直角坐标系中,点A(-3,4)与点B(-3,-4)关于
A.原点中心对称B.轴轴对称C.轴轴对称D.以上都不对

题型:不详难度:| 查看答案
给出下列四种图形:矩形、线段、等边三角形、正六边形.从对称性角度分析,其中与众不同的一种图形是___________.
题型:不详难度:| 查看答案
如图,在△ABC中,AB=AC,E、F分别为AB,AC上的点(E、F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A"EF,再展平.

(1)请证明四边形AE A"F为菱形;
(2)当等腰△ABC满足什么条件时,按上述方法操作,四边形AE A"F将变成正方形?(只写结果,不作证明)
题型:不详难度:| 查看答案
下列平面图形,既是中心对称图形,又是轴对称图形的是(    )
A.等腰三角形B.正五边形C.平行四边形D.矩形

题型:不详难度:| 查看答案
点P与点Q关于原点对称,则点P的坐标是(   )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.