当前位置:初中试题 > 数学试题 > 轴对称 > 在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,...
题目
题型:不详难度:来源:
在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.

(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;
(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.
答案
解:(1)AD=CF。理由如下:
在正方形ABCO和正方形ODEF中,∵AO=CO,OD=OF,∠AOC=∠DOF=90°,
∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF。
在△AOD和△COF中,∵AO=CO,∠AOD=∠COF,OD=OF,
∴△AOD≌△COF(SAS)。
∴AD=CF。
(2)与(1)同理求出CF=AD,

如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,
∵正方形ODEF的边长为,∴OE=×=2。
∴DG=OG=OE=×2=1。
∴AG=AO+OG=3+1=4,
在Rt△ADG中,
∴CF=AD=
解析
(1)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证。
(2)与(1)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OGOE,再求出AG,然后利用勾股定理列式计算即可求出AD。 
核心考点
试题【在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,】;主要考察你对轴对称等知识点的理解。[详细]
举一反三
如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.

(1)求证:AE=BC;
(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;
(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.
题型:不详难度:| 查看答案
夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形
荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为      m.

题型:不详难度:| 查看答案
如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列
操作:
先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2

题型:不详难度:| 查看答案
如图(1),已知两个全等三角形的直角顶点及一条直角边重合。将△ACB绕点C按顺时针方向旋转到 的位置,其中交直线AD于点E,分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有

A.5对    B.4对     C.3对    D.2对
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,﹣3),E(0,﹣4).写出D,C,B关于y轴对称点F,G,H的坐标,并画出F,G,H点.顺次而平滑地连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形说明它具有怎样的性质,它象我们熟知的什么图形?

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.