当前位置:初中试题 > 数学试题 > 轴对称 > 如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸...
题目
题型:不详难度:来源:
如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原.
(1)当x=0时,折痕EF的长为______;当点E与点A重合时,折痕EF的长为______;
(2)试探索使四边形EPFD为菱形时x的取值范围,并求当x=2时,菱形EPFD的边长.提示:用草稿纸折折看,或许对你有所帮助!
答案
(1)∵纸片折叠,使点D与点P重合,得折痕EF,
当AP=x=0时,点D与点P重合,即为A,D重合,B,C重合,那么EF=AB=CD=3;
当点E与点A重合时,
∵点D与点P重合是已知条件,
∴∠DEF=∠FEP=45°,
∴∠DFE=45°,
即:ED=DF=1,
利用勾股定理得出EF=


2

∴折痕EF的长为


2

故答案为:3,


2


(2)∵要使四边形EPFD为菱形,
∴DE=EP=FP=DF,
只有点E与点A重合时,EF最长为


2
,此时x=1,
当EF最短时,即EF=BC,此时x=3,
∴探索出1≤x≤3
当x=2时,如图,连接DE、PF.
∵EF是折痕,
∴DE=PE,设PE=m,则AE=2-m
∵在△ADE中,∠DAE=90°,
∴AD2+AE2=DE2,即12+(2-m)2=m2
解得m=
5
4
,此时菱形EPFD的边长为
5
4

核心考点
试题【如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸】;主要考察你对轴对称等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出△ABC关于y轴的对称图形△A1B1C1
(2)写出点A1,B1,C1的坐标(直接写答案).
A1______
B1______
C1______.
题型:不详难度:| 查看答案
如图,D、E分别是AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若S△DEF=4cm2,则梯形BDEC的面积为______cm2
题型:不详难度:| 查看答案
直角三角形纸片的两直角边BC,AC的长分别为6,8,现将△ABC如下图那样折叠,使点A与点B重合,折痕为DE,则CE的长为______.
题型:不详难度:| 查看答案
已知:如图,矩形纸片ABCD的边AD=3,CD=2,点P是边CD上的一个动点(不与点C重合,把这张矩形纸片折叠,使点B落在点P的位置上,折痕交边AD于点M,折痕交边BC于点N.
(1)写出图中的全等三角形.设CP=x,AM=y,写出y与x的函数关系式;
(2)试判断∠BMP是否可能等于90°.如果可能,请求出此时CP的长;如果不可能,请说明理由.
题型:不详难度:| 查看答案
概念理解
把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“剖分--重拼”.如图1,一个梯形可以剖分--重拼为一个三角形;如图2,任意两个正方形可以剖分--重拼为一个正方形.
尝试操作
如图3,把三角形剖分--重拼为一个矩形.(只要画出示意图,不需说明操作步骤)

阅读解释
如何把一个矩形ABCD(如图4)剖分--重拼为一个正方形呢?操作如下:
①画辅助图.作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M作MI⊥射线OX,与半圆交于点I;
②图4中,在CD上取点F,使AF=MI,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.
请说明按照上述操作方法得到的四边形EBHG是正方形.

拓展延伸
任意一个多边形是否可以通过若干次的剖分--重拼成一个正方形?如果可以,请简述操作步骤;如果不可以,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.