当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 已知:如图,AC是⊙O的直径,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切线,E是切点,求证:(1)OD∥AB;(2)2DE2=BE•OD...
题目
题型:不详难度:来源:
已知:如图,AC是⊙O的直径,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切线,E是切点,
求证:(1)ODAB;
(2)2DE2=BE•OD;
(3)设BE=2,∠ODE=a,则cos2a=
1
OD
答案
(1)证明:连接CE,∵DC和DE都与⊙O相切,
∴DC=DE,∠CDO=∠EDO,
∴OD⊥CE.(1分)
又AC是直径,故∠CEA=90°,
即AE⊥CE,
∴ODAB;(2分)

(2)证明:
证法一:DE、DC是⊙O的切线,ODAB,故∠ODE=∠ODC=∠B.(3分)
∴Rt△BCERt△DOE,
∴BC:OD=BE:DE,
即BC•DE=OD•BE.(5分)
而DE是Rt△BCE斜边上的中线,故BC=2DE,
∴2DE2=BE•OD.(6分)

证法二:BC2=BE•BA,OD是△ABC的中位线,(3分)
∴BA=2OD,又BC=2DE,
∴4DE2=BE•2OD,
∴2DE2=BE•OD.(6分)

(3)
解法一:由②和已知条件得DE2=OD,即OD2-OE2=OD.(7分)
两边同除以OD2得1-(
OE
OD
2-
1
OD

得1-sin2a=
1
OD

∴cos2a=
1
OD
(8分)

解法二:注意到D是BC的中点,可知DB=DE,
∴∠DEB=∠DBE=α,于是cosa=
1
DE
(过D作DG⊥EB可知).(7分)
由(2)及已知可得DE2=OD,
∴cos2a=
1
OD
.(8分)
核心考点
试题【已知:如图,AC是⊙O的直径,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切线,E是切点,求证:(1)OD∥AB;(2)2DE2=BE•OD】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
AB为⊙O的直径,C为弧AE的中点,CD⊥AB于D,AE交CD于点P,边接CB,过E作EFBC,交AB的延长线于F.
(1)求证:PA=PC.
(2)当E点在什么位置时,EF是⊙O的切线?
题型:不详难度:| 查看答案
已知:z图,AB是⊙了的直径,Ah是弦,∠BAh的平分线与⊙了的交点为D,DE⊥Ah,与Ah的延长线交于点E.
(1)求证:直线DE是⊙了的切线;
(2)若了E与AD交于点u,h了s∠BAh=
4
5
,求
Du
Au
的值.
题型:不详难度:| 查看答案
如图,AB为⊙O的直径,劣
BC
=
BE
弧BDCE,连接AE并延长交BD于D.
求证:
(1)BD是⊙O的切线;
(2)AB2=AC•AD.
题型:不详难度:| 查看答案
如图,AE、AD、BC分别切⊙O于E、D、F,若AD=20,则△ABC的周长为______.
题型:不详难度:| 查看答案
如图①,直线AM⊥AN,⊙O分别与AM、AN相切于B、C两点,连接OC、BC,则有∠ACB=∠OCB;(请思考:为什么?)如果测得AB=a,则可知⊙O的半径r=a.(请思考:为什么?)
(1)将图①中直线AN向右平移,与⊙O相交于C1、C2两点,⊙O与AM的切点仍记为B,如图②.请你写出与平移前相应的结论,并将图②补充完整;判断此结论是否成立,且说明理由.
(2)在图②中,若只测得AB=a,能否求出⊙O的半径r?若能求出,请你用a表示r;若不能求出,请补充一个条件(补充条件时不能添加辅助线,若补充线段请用b表示,若补充角请用α表示),并用a和补充的条件表示r.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.