当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图,以坐标原点O为圆心,6为半径的圆交y轴于A、B两点.AM、BN为⊙O的切线.D是切线AM上一点(D与A不重合),DE切⊙O于点E,与BN交于点C,且AD<...
题目
题型:不详难度:来源:
如图,以坐标原点O为圆心,6为半径的圆交y轴于A、B两点.AM、BN为⊙O的切线.D是切线AM上一点(D与A不重合),DE切⊙O于点E,与BN交于点C,且AD<BC.设AD=m,BC=n.
(1)求m•n的值;
(2)若m、n是方程2t2-30t+k=0的两根.求:
①△COD的面积;
②CD所在直线的解析式;
③切点E的坐标.
答案
(1)解法一:作DQ⊥BC于点Q.由切线长定理,可得AD=ED,BC=EC,
∴CD=m+n,QC=m-n.由勾股定理,得(m+n)2-(m-n)2=122,可得m•n=36,
解法二:证明:△AOD△BCO,得
AD
BO
=
AO
BC

∴AD•BC=AO•BO=36,即m•n=36;

(2)①连接OE,由已知得m+n=15,即CD=15,
∵CD切⊙O于E,∴OE⊥CD,
∴S△COD=
1
2
CD•OE=
1
2
×15×6=45,
②设CD所在直线解析式为y=ax+b,
由m+n=15,m•n=36,且m<n得m=3,n=12,
∴C(12,-6),D(3,6),
代入y=ax+b,得





12a+b=-6
3a+b=6
,解得a=-
4
3
,b=10,
∴CD所在直线的解析式为y=-
4
3
x+10.
③设E点坐标为(x1,y1),设直线CD交x轴于点G,作EF⊥BC,垂足为F,交OG于点P,则OG=
1
2
(m+n)=
15
2

∵∠OGE=∠ECF,
∴Rt△OEGRt△EFC,
OE
EF
=
OG
EC
,即
6
EF
=
15
2
12
,∴EF=
48
5

∴EP=
48
5
-6=
18
5

即y1=
18
5
,把y1=
18
5
代入y=-
4
3
x+10,得x1=
24
5

∴E(
24
5
18
5
).
核心考点
试题【如图,以坐标原点O为圆心,6为半径的圆交y轴于A、B两点.AM、BN为⊙O的切线.D是切线AM上一点(D与A不重合),DE切⊙O于点E,与BN交于点C,且AD<】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
已知:如图,⊙O的半径OC垂直弦AB于点H,连接BC,过点A作弦AEBC,过点C作CDBA交EA延长线于点D,延长CO交AE于点F.
(1)求证:CD为⊙O的切线;
(2)若BC=5,AB=8,求OF的长.
题型:不详难度:| 查看答案
如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,分别交PA、PB于点C、D.若PA、PB的长是关于x的一元二次方程x2-mx+m-1=0的两个根,求△PCD的周长.
题型:不详难度:| 查看答案
两圆外切,半径为4cm和9cm,则两圆的一条外公切线的长等于______cm。
题型:不详难度:| 查看答案
如图,在△ABC中,∠ACB=90°,O为BC边上一点,以O为圆心,OB为半径作半圆与AB边和BC边分别交于点D、点E,连接CD,且CD=CA,BD=6


5
,tan∠ADC=2.
(1)求证:CD是半圆O的切线;
(2)求半圆O的直径;
(3)求AD的长.
题型:不详难度:| 查看答案
如图AB是⊙O的直径,从⊙O外一点C引⊙O切线CD,D是切点,再从C点引割线交⊙O于E、F交BD于G,EF⊥AB于H,已知AB=4,OH=HB,CE=
1
2
EF,则CG=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.