当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).(1)求线段AD所在直线的函数表...
题目
题型:不详难度:来源:
如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).
(1)求线段AD所在直线的函数表达式;
(2)动点P从点A出发,以每秒1个单位长度的速度,按照A⇒D⇒C⇒B⇒A的顺序在菱形的边上匀速运动一周,设运动时间为t秒、求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切.
答案
(1)∵点A的坐标为(-2,0),∠BAD=60°,∠AOD=90°,
∴OD=OA•tan60°=2


3

∴点D的坐标为(0,2


3
),(1分)
设直线AD的函数表达式为y=kx+b,





-2k+b=0
b=2


3

解得





k=


3
b=2


3

∴直线AD的函数表达式为y=


3
x+2


3
.(3分)

(2)∵四边形ABCD是菱形,
∴∠DCB=∠BAD=60°,
∴∠1=∠2=∠3=∠4=30°,
AD=DC=CB=BA=4,(5分)
如图所示:
①点P在AD上与AC相切时,
连接P1E,则P1E⊥AC,P1E=r,
∵∠1=30°,
∴AP1=2r=2,
∴t1=2.(6分)
②点P在DC上与AC相切时,
CP2=2r=2,
∴AD+DP2=6,
∴t2=6.(7分)
③点P在BC上与AC相切时,
CP3=2r=2,
∴AD+DC+CP3=10,
∴t3=10.(8分)
④点P在AB上与AC相切时,
AP4=2r=2,
∴AD+DC+CB+BP4=14,
∴t4=14,
∴当t=2、6、10、14时,以点P为圆心、以1为半径的圆与对角线AC相切.(9分)
核心考点
试题【如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).(1)求线段AD所在直线的函数表】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
已知如图:△ABC内接于⊙O,P为BC边延长线上的一点,PA为⊙O的切线,切点为A,若PA=6,PC=4,求
sinB
sinACB
的值.
题型:不详难度:| 查看答案
已知,如图,以Rt△ABC的斜边AB为直径作⊙0,D是BC上的点,且有弧AC=弧CD,连CD、BD,在BD延长线上取一点E,使∠DCE=∠CBD.
(1)求证:CE是⊙0的切线;
(2)若CD=2


5
,DE和CE的长度的比为
1
2
,求⊙O半径.
题型:不详难度:| 查看答案
如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间满足的关系为______.
题型:不详难度:| 查看答案
如图,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于C,AB=3cm,PB=4cm,则BC=______cm.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.
(1)证明PA是⊙O的切线;
(2)求点B的坐标.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.