当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为...
题目
题型:不详难度:来源:
如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?
答案
(1)证明:连接OD,BD.
∵D是圆上一点
∴∠ADB=90°,∠BDC=90°
则△BDC是Rt△,且已知E为BC中点,
∴∠EDB=∠EBD.
又∵OD=OB且∠EBD+∠DBO=90°,
∴∠EDB+∠ODB=90°.
∴DE是⊙O的切线.

(2)连接OD,BD,AE,OE,
∵∠EDO=∠ABC=90°,
若要AOED是平行四边形,则DEAB,D为AC中点
又∵BD⊥AC,
∴△ABC为等腰直角三角形,
∴∠CAB=45°,
所以当∠CAB为45°时,四边形AOED是平行四边形.
核心考点
试题【如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
如图,在△ABC中,AB=AC,∠B=50°,⊙A与BC相切于点D,与AB相交于点E,则∠AED=______°.
题型:不详难度:| 查看答案
如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.
(1)求证:DB为⊙O的切线.
(2)若AD=1,PB=BO,求弦AC的长.
题型:不详难度:| 查看答案
如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则∠EFD=______°.
题型:不详难度:| 查看答案
如图,已知PAC为⊙O的割线,连接PO交⊙O于B,PB=2,OP=7,PA=AC,则PA的长为(  )
A.


7
B.2


3
C.


14
D.3


2

题型:不详难度:| 查看答案
含30°角的直角三角板ABC中,∠A=30°.将其绕直角顶点C顺时针旋转α角(0°<α<120°且α≠90°),得到Rt△A"B"C,A"C边与AB所在直线交于点D,过点D作DEA"B"交CB"边于点E,连接BE.
(1)如图1,当A"B"边经过点B时,α=______°;
(2)在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;
(3)设BC=1,AD=x,△BDE的面积为S,以点E为圆心,EB为半径作⊙E,当S=
1
3
S△ABC
时,求AD的长,并判断此时直线A"C与⊙E的位置关系.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.